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ABSTRACT

The central Mérida Andes (Venezuela) landscape is characterized by the presence of
well-preserved glacial landforms located between 2400 and 4978 m as.l
Geomorphological studies of these glacial landforms significantly contribute to the
Venezuelan Andes glaciations reconstructions. However, Last Glaciation (locally called
Meérida Glaciation) was poorly reconstructed because of limited chronological data.
This dissertation attempts to contribute to the Last Glaciation reconstruction and
paleoclimate knowledge since the late Pleistocene. In accordance to this, the
methodology involved geomorphological analysis and geochronological study. Glacial
landforms were dated based on the Terrestrial Cosmogenic Nuclide dating (‘°Be). This
method is suitable for dating quartz-rich materials and for the period of interest. To
deduce paleoclimate conditions, an analysis based on paleo ELA was developed.

In the central Mérida Andes different Late Pleistocene glacier dynamics were identified.
In the Mucubaji and the Mucuchache valleys, successive stages of glacier stop-advance
were identified during an overall glacier withdrawal. In the Gavidia and Mifafi valleys,
glacier withdrawal was rapid with the highest retreat rates (between 4-7 km/ky).
Morphometric features as glaciers bottom valley slopes, accumulation zone topography
(glaciers cirques with steep walls), areas and orientation controlled different glaciers
dynamics.

Glacier advances were evidenced between 2500-4200 m. MIS 3 glaciers advances has
been recognized in the Sierra Nevada. These were related to the highest runoff in the
north of South America produced by the Intertropical Convergence Zone (ITCZ) and
the local warm and wet climate conditions (locally named El Pedregal Interstadial).
LGM glacier advances were recorded in Sierra Nevada in the Mucubaji and Las Tapias
between 3100-3600 m. MIS 2 Glaciers advances mainly occurred during the Oldest
Dryas- El Caballo Stadial at around 17 ka. These glaciers advances correlate to the cold
temperatures in the North Hemisphere and the coldest temperatures recorded in tropical
ice cores.

Keywords

Terrestrial cosmogenic nuclides dating, TCN, cosmogenic dating, glacial landforms,
Andes Mérida, Venezuela. Pleistocene, Last Glaciation, LGM, paleo ELA, tropic
paleoclimate



RESUME ETENDU

Introduction
Le changement climatique impacte la société de manicres différentes. Celles-ci sont
particulicrement sensibles dans les zones soumises aux risques naturels, les zones
sensibles en termes de ressources hydriques et les zones ou la densité de population est

critique. Le climat a la surface terrestre est controlé par la radiation solaire.

La ceinture intertropicale recoit la majorité des radiations solaires terrestres et diffuse la
chaleur vers les hémispheres Nord et Sud grice aux circulations océaniques et
atmosphériques. La responsabilité des Tropiques a été suggérée dans la propagation des
glaciations, en particulier par la modulation de 1’humidité atmosphérique qui influence
la diminution de la radiation infrarouge (Uriarte, 2003). Aussi les changements
climatiques durant la Derni¢re Glaciation ont été associés a la réorganisation de
I"atmosphere dans les tropiques et aux modifications de la Circulation Océanique
Méridionale de 1°Atlantique (AMOC, en anglais), et enfin au paléoclimat global
(Chiang, 2009). Par conséquent, il est important de comprendre le fonctionnement
passé et présent du climat dans la ceinture intertropicale. Les avancées dans cette
connaissance permettront d’améliorer et de rendre plus réaliste les modeles climatiques,
en vue de projections plus précises du climat et d’une diminution de 1“impact négative
des changements climatiques sur la société (e. g. McGregor and Nieuwolt, 1998,

Chiang, 2009).

Les glaciers tropicaux sont reconnus par leur extréme sensibilité face aux changements
climatiques et par leur importance comme ressource hydrique pour les populations des
altiplanos Péruvien et Bolivien (e.g. Hastenrath, 1994; Kaser and Osmaston, 2002). Les
glaciers tropicaux sont extrémement intéressants dans I’étude du paléoclimat (Jomelli et
al., 2009). Ces études paleoclimatiques se basent sur 1’analyse de carottes de glace (e.g.
Thompson et al., 1996; Thompson et al., 1998; Ramirez et al., 2003) ou de
morphologies glaciaires pour la reconstruction des paléo-glaciers (e.g. Stansell et al.,

2007; Jomelli et al., 2009).

Les conditions paléo-climatiques a partir des paléo- glaciers peuvent étre établies selon
la chronologie et des reconstructions de 1’extension des glaciers. Les Andes

Péruviennes, Boliviennes et Equatoriennes constituent la zone tropicale la plus étudiée



(e.g. Porter, 2001; Mark, B.G., 2008; Jomelli et al., 2009). Cependant, les glaciations
dans les Andes Vénézuéliennes (aussi connu comme Andes de Mérida, MA en anglais)
restent partialement connues (Porter, 2001; Lachniet and Vazquez-Selem, 2005). Par
conséquent, la reconstruction des glaciations dans les Andes de Mérida constitue une
contribution significative pour progresser dans la connaissance du paléoclimat aux

tropiques.

Les Andes de Mérida sont caractérisées par la présence de morphologies glaciaires bien
préservées entre 2400-4978 m. Actuellement, la plupart des observations
morphologiques ont été compilées par Schubert (e.g. 1972; 1974; 1980; 1980a; 1992
and 1998). Les principales reliques glaciaires ont été observées sous la forme de deux
complexes morainiques situés entre 2600-2800 m et 2900-3500 m. Ils ont été attribués
aux Glaciations Mérida Inferieur et Supérieur (Schubert, 1970, 1974). Ces compilations
souffrent d’un manque évident de données chronologiques. Les données chronologiques
étant réparties sur ’ensemble du massif, il est difficile d’établir une reconstruction
détaillée des glaciations (e.g. Coronato and Rabassa, 2007; Carcaillet et al., 2013). Les
études géochronologiques basées principalement a partir d’analyses du radiocarbone
(e.g. Schubert, 1970; Salgado-Laboriau and Schubert, 1977; Schubert and Rinaldi,
1987; Rull 1998; Mahaney et al., 2001; Dirszowsky et al., 2005; Stansell et al., 2005;
Mahaney et al., 2007; Carrillo et al., 2008), de la thermoluminescence ( Schubert and
Vaz, 1987; Bezada, 1989), de la luminescence stimulée optiquement (Mahaney et al.,
2000) et plus récent, la mesure des nucléides cosmogéniques in-situ (TCN) (Wesnousky

et al., 2012; Guzman, 2013).

L’étude de ces morphologies glaciaires contribue a une meilleure compréhension et
reconstruction de la Dernicre Glaciation dans les Andes Vénézuéliennes. La
reconstruction de la Derniere Glaciation (connue dans la région comme Glaciation
Meérida) était limitée par la disponibilité de chronologie glaciaire. Cette thése a pour
objet de proposer des reconstructions de I’activité glaciaire depuis la Derniere
Glaciation et ainsi contribuer a la connaissance du paléoclimat dans une zone cruciale

comme les Andes tropicales de Mérida.

La nécessité d’acquérir de nouvelles données est un impondérable pour reconstruire les

avancés ou les reculs glaciaires. La géochronologie par TCN est une option appropriée
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car les roches sont riches en Quartz et donnent, dans la majorité des cas, des ages sans
ambiguités avec les processus dynamique étudiés (mouvements dynamiques des

glaciers du Pléistocene supérieur).

Le but de cette thése est de contribuer a: 1) reconstruire les dynamiques des glaciers
depuis le Pléistocene Supérieur, 2) identifier les fluctuations glaciaires et établir les
causes de I’évolution des couvertures glaciaires. 3) établir des comparaisons entre

différents enregistrements paleoclimatiques locaux, régionaux et globaux.

A partir de 1’acquisition de nouvelles données, nous avons tenté de répondre aux

questions scientifiques suivantes:

- Quelles sont les dynamiques de déglaciation dans les Andes centrales de Mérida
pendant le Pléistocene?

- Combien et auxquelles altitudes les principaux stades glaciaires ont été
identifiés?

- Quelles informations apportent ces reconstructions pour la compréhension du

paléoclimat?

Pour répondre toutes ces questions, nous avons daté une sélection de morphologies
glaciaires avec la technique des nucléides cosmogéniques produits in-situ (‘°Be). Les
conditions paleoclimatiques ont été établies sur la base de calculs de paléo-lignes

d’Equilibre (ELA).

L organisation du manuscrit est divisée en trois Parties (Partie I, Partie I et Partie III), a

savoir:

Partie I: Introduction générale et méthodes. Cette section apporte une description
globale des glaciations et du paléo-climat, ainsi qu'un cadre générale de la géologie de

la zone d’étude.
Partie II: “Résultats”
Cette section détaille les différents parametres nécessaires a 1’obtention des données

chronologiques. Cette section présente aussi la morphologie glaciaire étudiée et les

résultats du paléo LEG (Ligne d "Equilibre Glaciaire, ELA sigles en anglais).



Une partie de cette section est présentée sous la forme de 2 articles :
Carcaillet, J., Angel, 1., Carrillo, E., Audemard, F.A. and Beck C. 2013. Timing of the
last deglaciation in the Sierra Nevada of the Mérida Andes, Venezuela. Quaternary

Research, Vol. 80(3): 482-494.

Angel, I., Audemard, F., Carcaillet, J., Carrillo, E., Beck, C., Audin, L. Deglaciation
chronology in the Gavidia valley, Mérida Andes, Venezuela, inferred from cosmogenic

'"Be dating. En revision. Journal of South American Earth Sciences.

Partie III: Discussions.
Nous avons défini quelques corrélations avec le paléoclimat local, régional et global.
En plus, nous avons discuté les différents facteurs climatiques et geomorphiques qui

contrOlent les différentes histoires de deglaciation.

Une partie de ces travaux doctoraux ont été présentés lors des congres nationaux et

internationaux suivants:

- Angel, L., Carcaillet, J., Carrillo, E., Audemard, F. and Beck, C. Glacial chronology in
the Mérida Andes, Venezuela, deduced from cosmogenic '“Be radionuclide dating. 8t

IAG, International Conference on Geomorphology, Paris, France 2013.

- Angel, 1., Carcaillet, J., Carrillo, E., Audemard, F. and Beck, C. Glacial chronology
deduced from cosmogenic “Be radionuclide dating in La Culata, Gavidia and Mucubaji

valley, Venezuelan Andes. Nordic Workshop on Cosmogenic Nuclide Dating, Aarhus,

Denmark, 2014.

- Angel, 1., Audemard, F., Carrillo, E., Carcaillet, J. and Beck, C.. El isétopo
cosmogénico '"Be en la cronologia de morfologia glaciar en los valles de Gavidia y La

Culata, Andes Venezolanos. ler Congreso Venezolano de Geoquimica, Caracas,

Venezuela, 2014.

- Angel, 1., Carcaillet, J., Audemard, F., Carrillo, E., Condom, T., Audin, L. and Beck,
C. Asynchronous deglaciation histories in the central Venezuelan Andes. XIX INQUA
Congress, Nagoya, Japan, 2015.
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- Angel, 1., Carrillo, E., Carcaillet, J., Audemard, F.A. & Beck C. 2013. Geocronologia
con el isétopo cosmogénico 10Be, aplicacion para el estudio de la dindmica glaciar

cuaternaria en la region central de los Andes de Mérida. GEOS. Vol-44: 73-82.

Caractéristiques géologiques, paléoglaciologiques, climatiques et paleoclimatiques
des Andes de Mérida.

Cadre géologique

Les Andes de Mérida constituent une Cordillere située dans le sud-ouest du Venezuela
et orientée sur pres de 400 km selon un axe SW-NE. Le point culminant est le Pico
Bolivar (4978 m a.s.l.). Les Andes de Mérida sont constituées par un systeme cristallin
de gneiss Précambrien, de schistes et roches plutoniques datant du Paléozoique au
Mésozoique. La zone interne métamorphique est entourée par roches calcaires et
clastiques du Jurassique et Crétacée, ainsi que par des sédiments Quaternaires (Hackley
et al., 2006). L orogenese est liée a 1“interaction géodynamique des plaques du Panam4,
Caraibe et Amérique du Sud (Taboada et al., 2000; Audemard and Audemard, 2002;
Bermudez, 2009; Monod et al., 2010).

La tectonique des Andes de Mérida est principalement accommodée par la faille
décrochant de Bocond, orientée NE-SW sur ~500 km de longueur (Audemard and
Audemard, 2002). Les déplacements dextres sont mis en évidence par les déformations
de cordons morainiques et dépots alluviaux, ainsi que la déviation des réseaux
hydrographiques. Les déplacements cumulés sont estimés entre 60 m et 1000 m en
fonction des zones (Audemard and Audemard, 2002) avec des taux de déplacements

Quaternaire entre 3 and 14 mm/a (Audemard, 2003).

Glaciations dans les Andes de Mérida

Les études de glaciations ont commencé 2 la fin du XIX®™ siécle (e.g. Sievers, 1885).
Jahn (1925 et 1931) réalise les premieres estimations des couvertures glacieres
existantes a 1époque. Schubert (e.g. 1972; 1974; 1975; 1980; 1992 et 1998) a

développé plusieurs études glaciologiques dans la région. Les évidences

11



géomorphologiques liées aux glaciations ont été observées aux Andes de Mérida au-
dessus de ~2500 m. Les moraines sont les principales morphologies observées entre
~2500 m et ~3500 m. Au-dessus le paysage est dominé par une géomorphologie
d“érosion glaciere (e.g. vallées en auge, roches moutonnées, cryoclastie) (Schubert and

Vivas, 1993).

Les principales études approfondies ont concernés les morphologies associées a la
Derniere Glaciation (e.g. Kalm and Mahaney, 2011). Cette période est connue dans la
région comme la "Glaciation Mérida" et est traditionnellement identifiée a partir de
deux cordons morainiques situés entre 2600 et 3500 m (Schubert, 1974). Le cordon
situé entre 2900-3500 m est caractérisé par un till frais et chronologiquement lié aux
avancées glaciaires pendant les MIS 1, MIS 2 (Glaciation Mérida Supérieure)
(Schubert, 1974). Le cordon situé entre 2600 et 2800 m, est caractérisé par un till plus
météorisée, généralement couvert d’une végétation plus dense et chronologiquement
liée aux avancées glaciares pendant les MIS 4 et MIS 5 (Glaciation Mérida Inferieure)

(Schubert, 1974).

Paléoclimat

Les études paléoclimatiques sont basées a partir d’analyses de sédiments lacustres,
fluviatiles, glaciaires (e.g. Schubert, 1974; Schubert and Valastro, 1980; Salgado
Labouriau, 1984; Bradley et al., 1985; Salgado-Labouriau, 1989; Weingarten , 1990;
Yuretich, 1991; Salgado-Labouriau et al., 1992; Rull, 1995; Mahaney et al., 2000;
Dirszowsky, 2005; Rull et al., 2005; Stansell et al., 2005; Mahaney et al., 2007; Carrillo
et al., 2008; Rull et al., 2010; Stansell et al., 2010). D’autre part, des reconstructions

paléoclimatiques ont été basées a partir du calcul de paléo-ELA (Stansell et al., 2007).

Le paléoclimat avant la Glaciation Mérida Inferieure n’est pas bien connu. Entre la
Glaciation Mérida Inferieure et Supérieure, il a été identifié ’interstade "El Pedregal"
(Dirszowsky et al., 2005; Rull, 2005). A partir d’analyses sédimentologiques et
géochronologiques de 8 m de sédiments lacustres de la section PEDS (Mesa del
Caballo). Le Dernier Maximum Glaciaire a été établi par 1’étude palynologique de la

section PEDS5 entre 22.75 and 19.96 Cal ka BP (Schubert et Rinaldi, 1987). Les
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températures étaient ~ 9° inférieures a celles constatées d’aujourd hui (Stansell et al.,

2007).

Une période froide (El Caballo Stadial, 16.5+0.3 ka BP) a été identifiée sur la base
d’études palynologiques de sédiments de la zone de Mesa del Caballo . (Rull, 1998). La
température était alors 7°C inférieure a celle d’aujourd’hui (Rull, 1998). Une autre
période froide a été identifiée a 12.65 ka BP basée sur 1’étude paléocologique d une
terrasse alluviale de la vallée de Mucubaji (Salgado-Labouriau et Schubert, 1977). Cette
période a été caractérisée par des températures 2.9°C inférieures aux températures
actuelles. Rull et al. (2005, 2010) ont associé cette période au Younger Dryas. Des
conditions froides ont aussi été déterminées dans la Laguna Los Anteojos a 3900 m
(Sierra Nevada) entre 12.86 ka et 11.65 ka (Stansell et al., 2010; Rull et al., 2010). Les
calculs de paléo-ELA montrent un abaissement de la Paléo-ELA de 360 a 480 m par
rapport aux valeurs actuelles (Stansell et al., 2010) associées a des températures
inférieures de 2.2 a 3.8 °C (Stansell et al., 2010; Rull et al., 2010). Le Younger Dryas a
aussi été identifié dans les sédiments du lac de Mucubaji par un accroissement de la
susceptibilité magnétique entre 11.6 et 12.8 ka BP (Carrillo et al., 2008). Ces méme
sédiments indiquent un retour a des conditions plus tempérées au début de 1’Holocene
(Carrillo et al., 2008). Les analyses palynologiges indiquent que la végétation établie
durant I’'Holocene est similaire a celle observée actuellement (Salgado-Labouriau et al.,
1988, 1992; Rull, 1999). Quelques courts épisodes froids ont été identifiés entre 6.0 et
5.3 "C ka BP (La Culata cold/dry phase; Salgado-Labouriau and Schubert, 1976).

Conditions climatiques actuels

Le climat de la ceinture intertropicale est principalement controlé par la Zone de
Convergence Intertropical (ITCZ). Cette zone est tres dépendante des variations
saisonnieres du cycle solaire (Benn et al., 2005). Alors que les variations saisonnieres
de températures dans les Andes de Mérida ne sont pas tres significatives, les variations
journalieres peuvent atteindre 20 °C (Schubert and Clapperton, 1990). Ces variations de
températures sont associées a l’insolation, la radiation solaire et la nébulosité

(Monasterios and Reyes, 1980).
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L’humidité provient de 1’évaporation de 1°Atlantique tropical et 1"évapotranspiration du
bassin de 1’Orénoque, cette humidité est transportée vers les Andes par les alizés
(Pulwarty et al., 1998). Le climat actuel est aussi influencé par les températures de
surface de 1"Océan Pacifique Equatorial (Polissar et al., 2013). Les précipitations sont
saisonnieres avec un maximum pendant 1"été boréal et un minimum pendant 1’hiver
(Pulwarty et al., 1998). Cependant, Poveda et al. (2006) ont établi aussi un maximum de
précipitations pendant 1“automne d 'Hémisphere Nord. Les modeles de précipitation sont
aussi controlés par les caractéristiques orographiques, ainsi que les circulations

atmosphériques locales (Pulwarty et al., 1998; Poveda et al., 2006).

Méthodologie
Pour établir les chronologies glaciaires et reconstruire la dynamique des paleo-glaciers,
il est nécessaire d’impliquer des études géomorphologiques et géochronologiques. Les
reconstructions paléoclimatiques dans ce manuscrit sont obtenues a partir d ‘'une analyse
de paléo lignes d equlibrium glaciaire (LEG) et la comparaison avec les enregistrements
proxy paléoclimatiques. Les datations de morphologies glaciares ont été réalisées par la

mesure des nucléides cosmogéniques produits in-situ (béryllium-10, 'Be).

Géochronologie par la mesure des nucléides cosmogéniques produits in-situ (TCN,

Terrestrial Cosmogenic Nuclides)

Cette méthode est particulicrement adaptée car la lithologie des sites est riche en quartz
(minérale cible pour I’extraction) et parce que I’intervalle optimum de la méthode (<100

ka) est particulierement adaptée a la question scientifique.

Le '“Be est formée par 1"action des rayonnements cosmiques avec les atomes de silice
et d’oxygene des premiers metres de la lithospheére (Dunai, 2010). Le taux de
production adapté a la datation dans la ceinture intertropicale a fait 1’objet de
nombreuses améliorations ces dernieres années. Les valeurs considérées aujourd’hui
varient entre 3.63+0.17 at.g”'.yr" (Blard et al., 2013) et 3.97+0.09 at.g".yr" (Kelly et al.,
2013). Au début de ce travail doctoral, ces taux de production n’étaient pas encore
publiés et les premieres données ont été calculées avec le taux de production global de
Balco et al. (2008) (4.39 = 0.37 at.g'l.yr'l). Finalement tous les ages ont été recalculés

avec un taux de production similaire (Kelly et al., 2013). Ce taux a été utilisé parce que
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est cohérent avec les taux de production disponibles pour les Andes tropicales et sa
calibration était disponible sur le code de calcul en ligne « CRONUS online calculator »

(Balco et al., 2008).

Les mesures de concentration du '’Be ont été réalisées par spectrométrie de masse avec
un accelerateur de particules. Les échantillons ont été préalablement broyés, tamisés et
séparés des minéraux magnétiques. Une fois le quartz est isolé des autres minéraux (par
attaques acides successives) et dissout, le béryllium a été extrait par passage dans des

résines échangeuses d’ions.

Géomorphologie et reconstruction des paléoglaciers

Les investigations géomorphologiques ont été réalisées a partir de photographies
aériennes, d’observation de terrain et de modeles de terrain. Ceux-ci ont permis de
sélectionner les sites d’étude et d’identifier les zones a forte densité de morphologies
glaciaires. D’autre part, ces observations ont permis de faire les polygones des

paleoglaciers pour les déterminations des paléo ELA.

Les reconstructions des paléoglaciers nécessitent la reconstruction des surfaces et des
épaisseurs. Pour les surfaces, les délimitations des bassins versants ont été faites a I’aide
de River Tools et ArcGis. Les reconstructions des épaisseurs de glace ont été basées sur
les travaux de Benn et Hulton (2010), ce modele proposé se base sur le comportement
plastique de la glace en réponse a une I’application d’une force de contrainte. Les forces
nécessaires pour engager une déformation sont proportionnelles a la densité de la glace,
a la gravité et 1"épaisseur. Pour la détermination des épaisseurs de glace, on considere
que la force qui exerce les glaciers actuels est entre 50 et 150 kPa. Puisque la densité de
la glace et la gravité sont connues, il est alors possible de déterminer 1” épaisseur de

glace.

Les contours sont dessinés en fonction du comportement des glaciers actuels, concave

dans la zone d accumulation et convexe dans la zone d ablation chaque 100-200 m.
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Meéthodes pour la reconstruction des Paléo Ligne d 'Equilibre (LEG)

La reconstruction des paléo-ELA a été réalisée pour les vallées de Mucubaji,
Mucuchache et Mifafi. La paléo-ELA a aussi été calculé ponctuellement pour les
moraines de Los Zerpa, La Victoria, El Caballo et La Canoa. L objectif a été de faire
inférences des conditions paleoclimatiques tout au long de Sierra Nevada et Sierra del

Norte-Cordillera de Trujillo.

Les calculs de paléo LEG ont été réalisés a partir d’"Accumulation Area-Ratio" (AAR)
et de "Area-Altitude Balance Ratio" (AABR). L"AAR assume qu’a 1"état stationnaire, la
zone d’accumulation du glacier occupe une proportion fixe de la surface du glacier.
Pour les glaciers de hautes et moyennes latitudes, ce rapport est normalement autour
0.55-0.65 (Porter, 1975). Cette valeur est accompagnée d’une incertitude importante
pour les glaciers tropicaux, mais considérant I’hypothese d’une ablation plus importante
et d’une accumulation plus basse dans les zones tropicales, les rapports sont considérés
plus hauts que les rapports pour glaciers de moyenne et haute latitudes, avec des valeurs

de 0.8 (Kaser and Osmaston, 2002).

La méthode AABR considere les gradients de bilan de masse et 1’hypsométrie du
glacier. Cette méthode est basée sur le fait que les gradients d”accumulation (b.) et
d’ablation (b,) (BR= b,/b.) sont linéaires et connus. Comme la méthode AAR, les
valeurs d’AABR ne sont pas bien déterminées dans la zone tropicale, jusqu’a présent les

valeurs de bilan de masse (BR) sont > 3 (Kaser and Osmaston, 2002).

Les calculs des paléo-ELA ont été faits a 1’aide d’un code disponible sous ArcGis

(Pellitero et al., 2015).

En considérant 1“incertitude associée aux calculs en fonction des différents parametres,
les valeurs utilisées dans le cadre de ce projet sont entre 0.73-0.82 (AAR) et 5 et 10
(AABR).
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Résultats et discussions

Pour quoi la morphologie glaciaire a été étudiée?

L’histoire de deglaciation des Andes centrales de Mérida est encore a explorer parce
qu’il existe de grandes carences en données chronologiques. Plusieurs vallées ont été
étudiées dans le cadre de ce projet: la vallée de Mifafi (6 échantillons) dans la Sierra del
Norte et, dans la Sierra Nevada les vallées de Mucubaji (14 échantillons), Mucuchache
(7 échantillons) et Gavidia (24 échantillons). Le choix de ces vallées permet d’avoir une
vision globale des dynamiques glaciaires. La Sierra Nevada est la zone la plus étudiée
car il s’agit du massif ou sont encore présents les derniers glaciers vénézuéliens (moins

de 0.017 kmz, Braun et Bezada, 2013).

Pour contribuer a la reconstruction de la Glaciation Mérida, une partie de
I’échantillonnage a concerné la Sierra Nevada, Sierra del Norte (moraines El Desecho,
3 échantillons et La Culata, 12 échantillons) et Cordillera de Trujillo (Moraines de
Pueblo Llano, 6 échantillons- Moraine La Canoa, 2 échantillons). Dans Sierra de Santo
Domingo, il a été étudié les moraines de Los Zerpa (3 échantillons) et de Las Tapias (3
échantillons). Dans la partie Sud-Ouest, les moraines El Caballo (3 échantillons),

Mucubaji et Mucuchache ont été échantillonnées.

Les morphologies glaciaires échantillonnées sont principalement des blocs morainiques
et des surfaces polies par le glacier (roches moutonnées). Les échantillons ont été
collectés suffisamment haut pour minimiser les potentiels recouvrements par des dépdts

superficiels.

Histoires de deglaciation

Les ages d’abandon des morphologies glaciaires varient entre 9.5+1.1 et 83.7+3.4 ka.
Plus précisément dans les ages déduits sont dans la Sierra Nevada entre 9.5+1.1 et

37.0£1.6 ka, la Sierra del Norte entre 16.0+0.6 et 19.2+2.1 ka et la Cordillera de Trujillo
entre 17.6+1.6 et 83.7+3.4 ka.
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Plusieurs dynamiques glaciaires ont été identifiées dans les Andes centrales de Mérida.
Dans les vallées de Mucubaji et Mucuchache, la dynamique est caractérisée par
plusieurs épisodes d’avancé-arrét des langues glaciaires durant le recul général du
glacier. Dans les vallées de Gavidia et Mifafi, la disparition des glaciers semble avoir
été tres rapide avec des vitesses de recul longitudinal extrémement importantes (entre 4-
7 km/ky). Divers caractéristiques morphométriques, tel que la pente du fond de la
vallée, la topographie de la zone d accumulation (cirques glaciaires avec les versants
treés abruptes), des surfaces d’accumulation et son orientation, ont aussi controlé les

différents dynamiques glaciaires.

Les variations de comportement dynamiques des paléo-glaciers semblent effectives au
moins depuis le MIS 3. Dans les vallées de Mucubaji et Mucuchache, la présence de
nombreux cordons morainiques frontaux suggere que les paléo-glaciers ont reculé
graduellement. Dans la vallée de Mucubaji, des évidences d’activité glaciaire ont été
datées entre le Derniere Maximum Glaciaire (LGM) et "'Holocene au moins jusqu’a 6
ka. Dans la vallée de Mucuchache, le retrait du glacier semble plus précoce avec des
ages d’abandon situés entre MIS 3 et le LGM-OtD (Oldest Dryas). Dans la vallée de
Gavidia, le glacier est reculé rapidement entre 21 et 16.5 ka. La partie supérieure de la
vallée de Mucuchache n’a pas donné chronologiques disponibles. L’histoire de la
deglaciation a donc été établie jusqu’a 18 ka. Le glacier de la vallée de Gavidia a reculé
rapidement avec une disparition extrémement rapide entre 16.5 ka et 16 ka. Une
accélération a aussi ét€ observée dans la vallée de Mifafi, ou les vitesses de recul des
glaciers ont significativement augmenté entre 17-18 ka (4-7 km/ky). Dans les vallées de
Gavidia et Mifafi, la disparition complete des paleoglaciers a eu lieu pendant une
période de 0.5-1 ka. Ces vallées présentent des caractéristiques morphométriques
similaires comme la topographie du cirque glaciaire et I’orientation NE-SO de la zone
d’accumulation. Cette configuration entraine une augmentation de radiation solaire dans
les zones d“accumulation en comparaison avec les vallées de Mucubaji et Mucuchache
(orientation NO-SE). Une comparaison des courbes hypsométriques des paleoglaciers
de Mucubaji, Mucuchache et Mifafi entre 17-18 ka indique que les vallées de la Sierra
Nevada (Mucubaji, Mucuchache) ont des valeurs entre 60-70%, alors que pour Mifafi
cette valeur était de 20%. Les plus basses surfaces de la zone d’accumulation ont

controlé aussi le recul rapide du paléo glacier.
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D’autres caractéristiques mophométriques comme la pente du fond de la vallée et

I"orientation, semblent aussi controler les dynamiques glaciaires.

Les moraines observées entre 2500-4200 m permettent de pointer des avancées
glaciaires. Les avancées glaciaires observées pendant le MIS 3 (dans la Sierra Nevada)
sont liées a I’accroissement des précipitations dans le nord de 1" Amérique de Sud en lien
avec I activité de la Zone de Convergence Intertropicale. Ces avancées sont aussi liées
aux conditions plus chaudes et humides dans 1"Hémisphere Nord, qui dans les Andes
vénézuéliennes correspondent a 1'Interstade "El Pedregal". De nombreuses évidences
d’avancées glaciaires pendant le Dernier Maximum Glaciaire ont été enregistrées dans
la Sierra Nevada 4 Mucubaji et Las Tapias entre 3100-3600 m. Elles ont été reliées aux
températures froides observées dans 1"Hémisphere Nord, ainsi que dans les carottes des

glaciaires tropicaux.

Reconstruction des glaciations aux Andes centrales de Mérida

Jusqu’a présent, les avancées glaciaires correspondant Younger Dryas ont été reconnues
dans la Sierra Nevada a des altitudes supérieures a 3860 m (3862 m et 4000 m dans la
vallée de Mucubaji et le Massif d’Humboldt respectivement). Les avancées glaciaires
correspondant a 1’OldestDryas-LGM ont été identifiées dans la vallée de Mucubaji entre
3570 m et 3620 m, alors que ces avancées semblent étre plus basses dans la Sierra de
Santo Domingo (3100 m), la Sierra del Norte (3100 m et 3500 m) et dans la Cordillera
de Trujillo (2400 et 2800 m). Les avancées glaciares pendant le MIS 3 sont observées
en Sierra Nevada a la vallée de Mucuchachce et El Caballo entre 3400-3600 m. en
Cordillera de Trujillo a 2800 m. Les glaciations plus anciennes que MIS 5 ne sont pas
suffisamment documentées. Les seules évidences correspondent avec la section LAG a

Mesa del Caballo (3500 m).

A T’échelle régionale, la relation entre les avancées glaciaires et ’altitude n’est pas
évidente. Les évidences d’avancées glaciaires datées MIS 4, MIS, 3 et MIS 2 sont
quelques fois localisées a des altitudes treés similaires. La Glaciation Mérida a été décrite
sur la base de deux complexes morainiques situés entre 2600-3500 m (Schubert, 1974).
La Glaciation Mérida a été subdivisée (Mérida Supérieure et Inferieure), basée sur les

ages radiocarbonique de ces deux complexes morainiques (entre 24-13 cal kyr BP;
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Schubert, 1974). La Glaciation Mérida a été aussi corrélée avec des moraines observées
dans les Andes Colombiennes a 2600-2800 m (Glaciation Mérida Inférieure) et a 2900-
3500 m (Glaciation Mérida Supérieure). La définition de la Glaciation Mérida a été une
premiere bonne approximation pour comprendre la glaciation aux Andes
vénézuéliennes. Toutefois, les ages de deglaciation récemment obtenues par Guzméan
(2013) ou dans ce projet indiquent qu’un travail est encore nécessaire pour clairement
comprendre les modalités d’extension de la glaciation Mérida. Les ages d’exposition
des moraines de Pueblo Llano semblent indiquer que les glaciers sont arrivés a des
altitudes plus basses (jusqu’a 2300 m) que celles décrites jusqu’a présent (2600 m,

Schubert (1974)).

Les avancées glaciaires pendant le MIS 3 (observées a Mucuchache, El Caballo et
Pueblo Llano) donnent de nouvelles informations sur la chronologie de la Glaciation
Mérida. Si on considere la définition originale établie par Schubert (1974), Mucuchache
(3400 m) et El Caballo (3600 m) seraient liés a la Glaciation Mérida Supérieure alors
que les moraines de Pueblo Llano (2500 m) seraient liées a la Glaciation Mérida
Inférieure. La nouvelle chronologie glaciaire acquise dans le cadre de ce projet indique
que I’abandon de ces moraines a eu lieu durant I’Interstade El Pedregal identifié aux

Andes de Mérida entre 25-60 ka (Dirszowsky et al., 2005; Rull, 2005).

La plupart des avancées maximales des glaciers ont été identifiées a des ages plus
jeunes que le LGM sensu stricto, particulierement pendant la période LGM-OtD (17-19
ka). Des avancées maximales des glaciers observées dans les Andes de Mérida sont
similaires aux autres décrites dans les Andes Tropicales. Dans les Andes Equatoriennes,
Péruviennes et Boliviennes, les avancées maximales des glaciers ont eu lieu
principalement pendant le MIS 3. Une autre similarité est les peu d’évidences

géomorphologiques associées au Younger Dryas.

Paléo Ligne d 'Equilibre Glaciaire (ELA en anglais)

Les valeurs de paléo-ELA pour chaque méthode (AAR, AABR) de chaque paleoglacier
ne montrent pas de différences significatives et permettent de déterminer une paleo ELA
pondérée. En général, les valeurs sont 3475+27 m pour la moraine de La Canoa et

4397433 m pour la vallée de Mifafi.
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Dans la Sierra Nevada, les valeurs de paléo-ELA sont assez similaires. A 30 ka la paleo-
ELA était a 3765+£37 m (Mucuchache) et 3839+20 m (El Caballo) et, entre 20-22 ka a
3882+27 m (Mucuchache) et 3808+39 m (Mucubaji). Des différences plus significatives
existent entre les paléo-ELA calculées dans les Sierras Nevada et Santo Domingo (e.g.a

18 ka Mucuchache ELLA=3965+30 m et La Victoria ELA=3669+24 m).

Contribution paléoglaciologique a [!’enregistrement paléoclimatique des Andes

centrales de Mérida

Les conditions paléoclimatiques comme la température et la précipitation peuvent étre
déterminées a partir des analyses des paléo ELA (e.g. Lachniet Vazquez-Selem, 2005;
Stansell et al., 2007; Smith et al., 2011). Toutefois, il est important de rappeler que dans
la région intertropicale, les rapports utilisés pour calculer les Paléo-ELA (AAR et
AABR) demandent a étre encore précisés (e.g Rea et al., 2009). Les interprétations
paléoclimatiques sont donc accompagnées d’incertitudes significatives et non

quantifiables.

Les valeurs des paléo-ELA déterminées dans ce travail sont du méme ordre de grandeur
que celles publiées par ailleurs (e.g. Lachniet et Vazquez-Selem, 2005; Stansell et al.,
2007). Les changements de températures, précipitation, radiation solaire ou la
combinaison de ces facteurs sont les responsables principaux de la variabilité des

glaciers tropicaux (Kaser et Osmaston, 2002).

La valeur la plus basse des paléo ELA (3765+37 m) a été calculée pour la vallée de
Mucuchache pendant le MIS 3. Cette valeur est liée aux conditions climatiques plus
chaudes par rapport au LGM (réchauffement relatif de 5° C; Dirszowsky et al., 2005;
Rull, 2005) et plus humides par rapport au LGM ou post-LGM. Par conséquent, les
avancées glaciaires a la vallée Mucuchache et El Caballo semblent étre contrdlées par la

variation de la paléo-précipitation.

Les différences les plus significatives des paléo-ELA sont observées pour les périodes
Post-LGM (<18 ka). Les variations des paléo-ELA observées entre la Sierra Nevada et

Santo Domingo ont été attribuées aux variations significatives de régimes des
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précipitations entre ces sierras, de chaque c6té du col de Mucubaji (Lachniet et
Vazquez-Selem, 2005). Stansell et al. (2007) suggerent que ces différences dans les

valeurs des paléo-ELA ont été produites par les différences de paléo-températures.

Les valeurs de paléo-ELA de la Sierra del Norte présentent des différences plus
importantes par rapport aux paléo-ELA de la Sierra Nevada et de la Cordillera de
Trujillo. Ces différences indiquent que les régimes de précipitation sont différents dans
les vallées entre 16 et 19 ka. La vallée de Mifafi (Sierra del Norte) a été le secteur le
plus sec. Les secteurs les plus humides sont la Sierra de Santo Domingo et la Cordillera
de Trujillo. Ce modele de paléo-précipitation est similaire aux conditions climatiques

actuelles observées dans les Andes centrales de Mérida.

Conclusions et Perspectives

Cette these contribue a détailler la Derniere Glaciation dans les Andes de Mérida. Les
chronologies ont été obtenues par datation "Be de morphologies glaciaires. Les 100
échantillons ont permis d’apporter des données inédites, lesquelles constituent un
complément des données publiées. Les résultats et ses interprétations
paléoglaciologiques permettent aussi de progresser dans la connaissance

paléoclimatique des Andes centrales de Mérida.

Histoires de déglaciation, origines et variabilités

La déglaciation pendant le Pléistocene Supérieur montre des dynamiques variées. Dans
la vallée de Mucubaji, le retrait glaciaire s’est établi en deux étapes. La période LGM /
Late Glacial (~15 ka) montre un retrait de ~25 m/ka. Entre 15 ka et 11 ka le retrait du

glacier a été significativement plus rapide (~310 m/ka).

Dans la vallée Mucuchache, I’extension maximale a été datée vers 36 ka. Le retrait
glaciaire a été documenté entre le MIS 3 (~36 ka) et MIS 2 (~18 ka) avec une vitesse de
recul ~0.25 km/ka. L“absence de moraines (a 1’exception de placage morainiques
latéraux d’extension limitée) pour les vallées de Mifafi et de Gavidia indiquent que la
dynamique n’a pas été caractérisée par des longues périodes d’arrét-avancée pendant le
recul général des paléo glaciers. Dans la vallée de Gavidia, la deglaciation s’est établie

en deux différents périodes. Pour la premiere (21 ka ~16.5 ka), le recul était de ~0.26
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km/ka. Durant la deuxieme période entre ~16.5 ka- ~ 16 ka, le glacier a reculé de facon
extrémement rapide (~4.7 km/ka). Dans la vallée de Mifafi (Sierra del Norte), les

données suggerent la disparition du paléo glacier la plus rapide observée (~7 km/ka).

L’origine de différences de comportement des glaciers pourrait étre expliquée par les

différentes orientations des zones d “accumulation et de pentes du fond des vallées.

Reconstruction de la Derniere Glaciation (Glaciation Mérida)

Les avancées glaciaires du MIS1 jusque MIS 4 ont été reconnues entre 2500-4200 m.
Le MIS 4 a été identifié dans la vallée de Pueblo Llano (2500 m). Le MIS 3 a été
localisé pour la premiére fois dans la Sierra Nevada entre 3400-3600 m (Mucuchache et
El Caballo). Le MIS 2 est localisé entre 2460-3620 m. L “impact du LGM sensu stricto
dans les Andes centrales de Mérida est observé dans les vallées de Mucubaji (3600 m)
et Las Tapias (3100 m). Une période tres importante d’avancées glaciaires a été
observée pendant 1°OtD-Estadio El Caballo autour 17 ka (La Culata entre 3100-3400
m; Sierra de Santo Domingo ~ 3100 m et La Canoa ~2800 m). Les avancées glaciaires
pendant le MIS 1 sont treés peu documentées. Juste quelques évidences ont été observées

dans la Sierra Nevada (Vallée de Mucubaji a 3800 m) correspondant au Younger Dryas.

Contribution paléoglaciologique a I’enregistrement paléoclimatique des Andes

centrales de Mérida

Pendant le LGM, des conditions climatiques similaires ont été déduites dans les vallées
de Mucubaji et Mucuchache (Sierra Nevada). Cette déduction est basée sur le calcul de
valeurs similaires de paléo-ELA (3882+27 m et 3808+39 m, respectivement). Ces
conditions climatiques ont été plus différentes pendant le post-LGM. Les patrons de
précipitation entre les 16-19 ka (LGM-OtD-El Caballo) semblent étre similaires aux
conditions actuelles. Les secteurs les plus humides sont localisés dans la Sierra de Santo

Domingo-Cordillera de Trujillo et les plus secs dans la vallée de Mifafi.

Les avancées glaciaires décrites durant le MIS 3 et MIS 4 ont été associées a une forte
activité de la Zone de Convergente Intertropicale. Les avancées glaciaires observées
durant le MIS 2 ont été associées aux températures basses dans 1'Hémisphere Nord et

les Andes tropicales.
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Perspectives

Plus de questions scientifiques sont créés apres cette these. Beaucoup de vallées
glaciaires présentent des morphologies héritées de 1’activité glaciaire, qui nécessitent de
poursuivre les campagnes de datation. Cette situation ouvre une possibilité de faire plus
des missions sur le terrain pour améliorer la chronologie glaciaire dans les différentes
vallées des Andes vénézuéliennes. Il serait plus intéressante d’étudier la dynamique

glaciaire avant le LGM et pendant le YD.

Concernant le topique de paléoclimat tropical, les résultats de cette theése pourraient
contribuer pour la quantification des conditions paléoclimatiques avec les valeurs de
paléo ELA et la modélisation des glaciers (e.g. Plummer et Phillips, 2003). Il serait
aussi tres productif d’intégrer les valeurs des isotopes stables obtenues pendant le

développement de cette these avec une collaboration avec le CSIC (Espagne).

La chronologie glaciaire obtenue avec ce travail de recherche peut étre utilisée aussi
pour faire des études de la Néotectonique aux Andes centrales de Mérida. Aussi cela a
permis de faire des études de recherche pour déterminer les volumes d’eau libérée
pendant la deglaciation, étudier les balances hydrologiques et de transport des

sédiments.
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RESUMEN EXTENDIDO

Introduccion
El cambio climatico impacta en la sociedad de diferentes maneras; por ejemplo: en la
temdtica de riesgos naturales, en la disponibilidad de recursos hidricos y en la
disponibilidad de territorios en las zonas costeras. El clima terrestre esta controlado por
la radiacién solar. La zona intertropical recibe la mayor cantidad de radiacion solar y el
calor es distribuido hacia los Hemisferios Sur y Norte gracias a la circulacion ocednica y

atmosférica.

Estudios han sefialado la posible importancia de la zona intertropical para propagar las
glaciaciones entre los Hemisferios, esto es debido a las posibles variaciones de la
humedad atmosférica en esta region que genera la disminucién de la radiacién (Uriarte,
2003). Los cambios climéticos durante la Ultima Glaciacién también han sido asociados
a la reorganizacion de la atmoésfera en la region tropical y las modificaciones de la
Circulacién Meridional del Atlantico (AMOC, siglas en onglés) (Chiang, 2009). Es por
esto, que es importante estudiar el clima en la zona intertropical, para comprender el
funcionamiento pasado, presente y futuro del clima a nivel global. Avances cientificos
en esta temdtica permitirdn generar modelos climéticos mds realistas y, esto conllevard,
a realizar predicciones climédticas que permitan mitigar el impacto del cambio climético

en la sociedad (e. g. McGregor and Nieuwolt, 1998, Chiang, 2009).

Los glaciares tropicales son reconocidos por su extrema sensibilidad ante los cambios
climéticos y por su importancia como recurso hidrico en los altiplanos de Pert y Bolivia
(e.g. Hastenrath, 1994; Kaser and Osmaston, 2002). Los glaciares tropicales son un
recurso importante para estudiar el paleoclima (Jomelli et al., 2009). Estos estudios
paleoclimaticos pueden ser desarrollados utilizando nucleos de hielo (e.g. Thompson et
al.,, 1996; Thompson et al., 1998; Ramirez et al., 2003) o morfologia glaciar para
realizar la reconstruccion de paleoglaciares (e.g. Stansell et al., 2007; Jomelli et al.,

2009).

Condiciones paleoclimdticas pueden ser inferidas a partir de la cronologia de la
morfologia glaciar y la reconstruccién de los paleoglaciares. Los Andes Peruanos,
Bolivianos y Ecuatorianos han sido los méas estudiados dentro de la region tropical (e.g.

Porter, 2001; Mark, B.G., 2008; Jomelli et al., 2009). Al contrario de los Andes
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tropicales centrales, Los Andes Venezolanos (conocidos también como Andes de
Meérida, MA siglas en inglés) han sido menos estudiados (Porter, 2001; Lachniet and
Vazquez-Selem, 2005). Por lo tanto, la reconstruccion de las glaciaciones en los Andes
de Mérida contribuye significativamente con el progreso en el conocimiento del

paleoclima en la regién tropical.

Los Andes de Mérida estan caracterizados por la presencia de morfologia glaciar
preservada entre 2400-4978 m. Actualmente, la mayoria de las descripciones
geomorfoldgicas fueron realizadas por Schubert (e.g. 1972; 1974; 1980; 1980a; 1992 y
1998). Las principales evidencias de la influencia de los glaciares en los Andes de
Mérida estdn representadas por dos complejos morrénicos localizados entre 2600-2800
m y 2900-3500 m. Estos complejos morrénicos fueron atribuidos a las Glaciaciones de
Meérida Temprana y Tardia (Schubert, 1970, 1974). En Los Andes de Mérida existe la
carencia de cronologia glaciar y esto limita la reconstruccion detallada de las
glaciaciones en esta region (e.g. Coronato and Rabassa, 2007; Carcaillet et al., 2013).
Los estudios geocronoldgicos estan basados principalmente en andlisis de radiocarbono
(e.g. Schubert, 1970; Salgado-Laboriau and Schubert, 1977; Schubert and Rinaldi,
1987; Rull 1998; Mahaney et al., 2001; Dirszowsky et al., 2005; Stansell et al., 2005;
Mahaney et al., 2007; Carrillo et al., 2008), termoluminiscencia ( Schubert and Vaz,
1987; Bezada, 1989), luminiscencia estimulada 6pticamente (Mahaney et al., 2000) y
mds recientemente, en los isétopos cosmogénicos producidos in-situ (TCN, siglas en

inglés) (Wesnousky et al., 2012; Guzmén, 2013).

El estudio de la morfologia glaciar en esta region, contribuye significativamente con el
entendimiento y reconstruccién de la Ultima Glaciacién (conocida en la regién como
Glaciaciéon Mérida). Esta tesis tiene como objetivo general reconstruir la dindmica
glaciar e historias de desglaciacién durante la Ultima Glaciacién y contribuir con el
conocimiento del paleoclima en los Andes de Mérida. Para lograr estos objetivos es
necesario utilizar un método paleoglaciolégico que involucra un andlisis
geocronoldgico. La geocronologéa por TCN es una opcidon apropiada en este caso
porque la litologia en la region es rica en cuarzo y edades de desglaciacion pueden ser

obtenidas mas exactamente durante incluso todo el Pleistoceno.

26



Esta tesis tiene como objetivos especificos los siguientes: 1) reconstruir la dindmica de
los glaciares desde el Pleistoceno Superior, 2) Identificar las diferencias y posibles
causas de las mismas y, 3) realizar correlaciones con los registros paleoclimaticos

locales, regionales y globales.
Esta tesis pretende responder las siguientes preguntas cientificas:

- (Coémo fue la dindmica glaciar en los Andes centrales de Mérida durante el
Pleistoceno?

- (Qué posibles factores controlarian la dindmica glaciar e historias de
desglaciacién en la regién durante la Ultima Glaciacién?

- (Cudntos avances glaciares pueden ser identificados y cdmo es su distribucion
altitudinal?

- (Qué inferencias paleoclimdticas pueden ser obtenidas a través del andlisis

paleoglaciolégico?

Para responder a todas estas preguntas, en esta tesis se realizd un estudio
L, . ey ., s . . . . 10
geocronoldgico utilizando el isétopo cosmogénico producido in-situ ~~Be. Las
condiciones paleocliméticas han sido inferidas a través del andlisis de las paleo Lineas

de Equilibrio Glaciar (ELA, siglas en inglés).
El manuscrito estd dividido en tres partes (Parte I, Parte I y Parte III):

Parte I: Introduccion general y métodos. En esta seccion se realiza una descripcion
general de las glaciaciones, el clima tropical y un marco general de la geologia de la

zona de estudio.

Parte II: “Resultados”

Esta seccion detalla los diferentes parametros necesarios para la obtencion de los datos
geocronoldgicos. También presenta la morfologia glaciar, su cronologia y los resultados

de paleo ELA.

Una parte de esta seccion estd presentada en dos articulos:
Carcaillet, J., Angel, 1., Carrillo, E., Audemard, F.A. and Beck C. 2013. Timing of the

last deglaciation in the Sierra Nevada of the Mérida Andes, Venezuela. Quaternary
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Research, Vol. 80(3): 482-494.

Angel, I., Audemard, F., Carcaillet, J., Carrillo, E., Beck, C., Audin, L. Deglaciation
chronology in the Gavidia valley, Mérida Andes, Venezuela, inferred from cosmogenic

'"Be dating. En revisién. Journal of South American Earth Sciences.

Una parte de los resultados de esta tesis doctoral fueron presentados en diversos

congresos:

- Angel, L., Carcaillet, J., Carrillo, E., Audemard, F. and Beck, C. Glacial chronology in
the Mérida Andes, Venezuela, deduced from cosmogenic '“Be radionuclide dating. 8t

IAG, International Conference on Geomorphology, Paris, France 2013.

- Angel, L., Carcaillet, J., Carrillo, E., Audemard, F. and Beck, C. Glacial chronology
deduced from cosmogenic “Be radionuclide dating in La Culata, Gavidia and Mucubaji

valley, Venezuelan Andes. Nordic Workshop on Cosmogenic Nuclide Dating, Aarhus,

Denmark, 2014.

- Angel, I., Audemard, F., Carrillo, E., Carcaillet, J. and Beck, C. El isétopo
cosmogénico '“Be en la cronologia de morfologia glaciar en los valles de Gavidia y La

Culata, Andes Venezolanos. ler Congreso Venezolano de Geoquimica, Caracas,

Venezuela, 2014.

- Angel, 1., Carcaillet, J., Audemard, F., Carrillo, E., Condom, T., Audin, L. and Beck,
C. Asynchronous deglaciation histories in the central Venezuelan Andes. XIX INQUA

Congress, Nagoya, Japan, 2015.

- Angel, 1., Carrillo, E., Carcaillet, J., Audemard, F.A. & Beck C. 2013. Geocronologia
con el isétopo cosmogénico 10Be, aplicacién para el estudio de la dindmica glaciar
cuaternaria en la region central de los Andes de Mérida. GEOS. Vol-44: 73-82.

Parte III: Discusiones.

Fueron realizadas correlaciones con el paleoclima local, regional y local. Ademas,
fueron discutidos diferentes factores climdticos y geomorficos que controlan las

diferentes historias de desglaciacion.
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Marco geoldgico, paleoglaciologico, climatico y paleoclimatico en los Andes de
Meérida.

Marco geolégico

Los Andes de Mérida es una cordillera ubicada en el suroeste de Venezuela, la misma
estd orientada SW-NE vy tiene una extension de cerca de 400 km de largo. El punto mas
alto es conocido como Pico Bolivar (4978 m a.s.l.). Los Andes de Mérida estian
constituidos por un sistema cristalino del Precdmbrico, esquistos y rocas plutdnicas del
Paleozéico-Mesozdico. La parte interna estd constituida por rocas metamorficas,
calcdreas y clasticas del Jurdsico-Creticico y también por sedimentos Cuaternarios
(Hackley et al., 2006). La orogénesis esta relacionada a la interaccidon geodindmica de
las placas de Panam4, Caribe y América del Sur (Taboada et al., 2000; Audemard and
Audemard, 2002; Bermudez, 2009; Monod et al., 2010).

La principal estructura que deforma a los Andes de Mérida es la falla de Bocond, es una
falla transcurrente dextral orientada NE-SW con ~500 km de largo (Audemard and
Audemard, 2002). La actividad de esta falla se evidencia por la deformacién de
cordones morrénicos y depdsitos aluviales desplazados asi como la desviacion de rios.
Los desplazamientos acumulados de esta falla han sido estimados entre 60 m et 1000 m
(Audemard and Audemard, 2002) con una tasa de deslazamiento durante el Cuaternario

entre 3 y 14 mm/a (Audemard, 2003).

Ultima Glaciacién en los Andes de Mérida

Estudios relacionados con la reconstruccion de las glaciaciones comenzaron a finales
del siglo XIX (e.g. Sievers, 1885). Jahn (1925, 1931) realiz6 las primeras estimaciones
de la cobertura glaciar existente en la €poca. Schubert (e.g. 1972; 1974; 1975; 1980;
1992 and 1998) desarrollé diversos estudios de geologia glaciar en la region. Las
evidencias geomorfolégicas que soportan la actividad glaciar has sido observadas
tradicionalmente en los Andes de Mérida por encima de los ~2600 m. Dichas evidencias

estdn conformadas principalmente de dos cordones morrénicos entre ~2600 my ~3500
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m. El paisaje por encima de los 3500 m estéd caracterizado por morfologias de erosion

glaciar como por ejemplo valles en u y rocas aborregadas (Schubert and Vivas, 1993).

En los Andes de Mérida la Ultima Glaciacién es la glaciacién mejor documentada (e.g.
Kalm and Mahaney, 2011). Este periodo es conocido en la regiéon como la « Glaciacién
Mérida » vinculado a los dos complejos morrénicos entre 2600 et 3500 m menciondos
anteriormente (Schubert, 1974). El cordon situado entre 2900-3500 m esta caracterizado
por un till fresco correspondiente a avances glaciares ocurridos durante los estadios
isotépicos marinos (MIS en inglés) 1 y 2 (Glaciaciéon Mérida Tardia) (Schubert, 1974).
El cordén morrénico entre 2600-2800 m, esta caracterizado por un till mas meteorizado,
cubierto generalmente por una vegetacion densa y el cual, corresponde a avances
glaciares ocurridos durante los MIS 4 y MIS 5 (Glaciacién Mérida temprana) (Schubert,
1974).

Paleoclima

Los estudios paleocliméticos estdn basados en andlisis realizados en sedimento lacustre,
fluvial y glaciar (e.g. Schubert, 1974; Schubert and Valastro, 1980; Salgado Labouriau,
1984; Bradley et al., 1985; Salgado-Labouriau, 1989; Weingarten , 1990; Yuretich,
1991; Salgado-Labouriau et al., 1992; Rull, 1995; Mahaney et al., 2000; Dirszowsky,
2005; Rull et al., 2005; Stansell et al., 2005; Mahaney et al., 2007; Carrillo et al., 2008;
Rull et al., 2010; Stansell et al., 2010). Adicionalmente, hay inferencias paleocliméticas

basadas en estudios de paleo ELA (e.g. Stansell et al., 2007).

El paleoclima antes del periodo correspondiente a la Glaciacion Mérida Tardia no es
bien conocido. Entre la Glaciacion Mérida Tardia y Temprana fue identificado el
Interestadio “El Pedregal” (Dirszowsky et al., 2005; Rull, 2005). El mismo, ha sido
establecido después del estudio sedimentoldgico y geocronoldgico de 8 m de
sedimentos lacustres de la seccion PED5 (en Mesa del Caballo). El dltimo periodo
glacial (LGM siglas en inglés) fue establecido en la regién en base al estudio
palinoldgico de la seccion PEDS entre 22.75 y 19.96 Cal ka BP (Schubert and Rinaldi,
1987). Las temperaturas eran ~ 8° mds bajas que las temperaturas actuales (Stansell et

al., 2007).
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Un periodo frio hace 16.5+0.3 ka BP fue establecido en Mesa del Caballo en base a
andlisis palinolégicos, el mismo fue denominado como el Estadio El Caballo (Rull,
1998). La temperatura era 7°C mds baja que el valor actual (Rull, 1998). Otro periodo
frio fue identificado a 12.65 ka BP en base a estudios palinolégicos de terrazas aluviales
del valle de Mucubaji (Salgado-Labouriau and Schubert, 1977). Este periodo estuvo
caracterizado por temperaturas 2.9°C mads bajas que las temperaturas actuales. Rull et al.
(2005, 2010) relacion¢ este periodo frio con el Younger Dryas. Condiciones frias fueron
igualmente determinadas en la Laguna Los Anteojos a 3900 m (Sierra Nevada) entre
12.86 ka y 11.65 ka (Stansell et al., 2010; Rull et al., 2010). Los calculos de paleo ELA
muestran un descenso de la paleo ELA entre 360-480 m por debajo de los valores
actuales (Stansell et al., 2010), este descenso de la paleo ELA estuvo relacionando a un
disminucién de temperaturas 2.2-3.8 °C (Stansell et al., 2010; Rull et al., 2010). El
Younger Dryas fue identificado también en los sedimentos de la Laguna de Mucubaji en
base al aumento de los valores de susceptibilidad magnética entre 11.6 y 12.8 ka BP
(Carrillo et al., 2008). En estos mismos sedimentos, fue inferido el regreso a
condiciones mas calidas durante el inicio del Holoceno (Carrillo et al., 2008). Los
andlisis palinoldgicos indican que la vegetacion que se establecié durante el Holoceno
es similar a la observada actualmente (Salgado-Labouriau et al., 1988, 1992; Rull,
1999). También fue identificado un periodo corto y frio entre 6.0 y 5.3 “C ka BP
conocido como La Culata (Salgado-Labouriau y Schubert, 1976).

Condiciones climaticas actuales

El clima de la zona intertropical estd controlado principalmente por la Zona de
Convergencia Intertropical (ITCZ). Esta zona es muy dependiente de las variaciones
estacionarias del ciclo solar (Benn et al., 2005). Las mayores variaciones de la
temperatura en los Andes de Mérida ocurren diariamente, mds que estacionalmente
como en las zonas templadas, las variaciones diarias pueden ser de hasta 20 °C
(Schubert and Clapperton, 1990). Estas variaciones de temperaturas estdn asociadas a

cambios de insolacion, radiacion solar y nubosidad (Monasterios and Reyes, 1980).

La humedad proviene de la evaporacion del Atlantico tropical y la evapotranspiracion
de la cuenca del Orinoco, la humedad es transportada hacia los Andes por los vientos

alisios (Pulwarty et al., 1998). El clima actual también estd controlado por variaciones

31



de temperatura en la superficie del Océano Pacifico (Polissar et al., 2013). Las
precipitaciones son estacionarias con un méaximo durante el verano boreal y un minimo
durante el invierno (Pulwarty et al., 1998). También Poveda et al. (2006) determind la
existencia de un periodo de lluvias durante el otofio en el Hemisferio Norte. Las
precipitaciones en esta region, también estdn controladas por caracteristicas orograficas

y circulaciones atmosféricas locales (Pulwarty et al., 1998; Poveda et al., 2006).

Metodologia

Para establecer cronologias glaciares y reconstruir la dindmica de los paleoglaciares, es
necesario realizar andlisis geomorfolégicos y geocronoldgicos. Las reconstrucciones
paleoclimadticas en este manuscrito son obtenidas a partir de un andlisis de las paleo
ELA y de comparaciones con registros proxy paleoclimdticos. El método
geocronoldgico utilizado fue el del isétopo cosmogénico producido in-situ (berilio-10,

10Be).

Geocronologia utilizando el is6topo cosmogénico 1Be producido in-situ (TCN, en

inglés)

El empleo de este método en esta tesis se debe a que la litologia en la regién de estudio
es rica en cuarzo (mineral objetivo para realizar la extraccién del '°Be), mineral en el
cual estd bien establecida la tasa de produccion del isétopo cosmogénico y, porque este
método geocronoldgico funciona bien para estudiar el tiempo geoldgico de interés en

este trabajo (durante el Pleistoceno Tardio hace <100 ka).

El '“Be es formado por la accién de los rayos cosmicos sobre los dtomos de silicio y
oxigeno en los primeros metros de la litdsfera (Dunai, 2010). La tasa de produccion del
10 Be en la zona intertropical no estaba bien establecida, razén por la cual, la misma ha
sufrido diversas actualizaciones en los ultimos afios. Los valores reportados en la zona
intertropical varian entre 3.63+0.17 at.g”.yr" (Blard et al., 2013) y 3.97+0.09 at.g"'.yr"
(Kelly et al., 2013). Al principio de este trabajo doctoral, las tasas de produccién en la
region no estaban publicadas y las primeras edades de exposicion fueron calculadas con
la tasa de produccién global de Balco et al. (2008) (4.39 + 0.37 at.g”.yr'"). Al final,
todas las edades fueron recalculadas utilizando una tasa de produccién similar de Kelly

et al. (2013). Esta tasa de produccién fue utilizada en el presente trabajo porque es

32



coherente con las tasas de producciéon disponibles para los andes tropicales y, su
calibracion estaba disponible en la pédgina para realizar los cdlculos de edades en la

pagina web « CRONUS online calculator » de Balco et al (2008).

Las medidas de concentracién del '°Be fueron realizadas por espectrometria de masas
utilizando un acelerador de particulas. Las muestras fueron molidas, pulverizadas,
tamizadas y separados los minerales magnéticos. Una vez que el cuarzo es aislado de
los otros minerales (gracias a varios ataques dcidos sucesivos) y disuelto, el berilio es

extraido pasando la muestra por resinas de intercambio de iones.

Analisis geomorfolégico y reconstruccion de los paleoglaciares

El andlisis geomorfolégico fue realizado partir de fotografias aéreas, modelos digitales
de terreno y el trabajo de campo. Mediante este anélisis fueron identificados los sitios
con una densidad alta de morfologia glaciar y a través de esta informacion fueron
seleccionados los sitios de estudio. Adicionalmente, el andlisis geomorfolégico permitid
realizar la reconstruccién de los paleoglaciares para realizar la determinacién de las

paleo ELA.

La reconstrucciéon de los paleoglaciares necesita la reconstruccioén de las superficies y
espesores. Para realizar la delimitacion de la superficie del paleoglaciar fueron
utilizados los programas River Tools y ArcGis. Las reconstrucciones de los espesores
de hielo se realizaron en base al trabajo de Benn y Hulton (2010), este modelo
contempla el comportamiento plastico del glaciar ante la aplicacién de una fuerza. La
fuerza necesaria para generar la deformacion del glaciar es proporcional a la densidad
del hielo, la gravedad y el espesor. Para realizar la determinacion de los espesores de
hielo, se considera la fuerza actual necesaria para que los glaciares actuales puedan
desplazarse, la misma varia entre 50 y 150 kPa. Ya que la densidad del hielo y la
gravedad son valores conocidos, es entonces posible determinar los valores de espesores

del paleoglaciar.

Las curvas de nivel de la superficie del paleoglaciar son dibujadas en funcién a la

morfologia de la superficie de los glaciares actuales; es decir, concavo en la zona de
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acumulacién y convexo en la zona de ablacion. Las curvas de nivel fueron dibujadas

cada 100-200 m.

Métodos para la reconstruccion de las Paleo Lineas de Equilibrio Glaciar (ELA)

La reconstruccion de las paleo ELA fueron realizadas para los valles de Mucubaji, La
Mucuchache y Mifafi. También fueron realizadas determinaciones de paleo ELA para
las morrenas de Los Zerpa, La Victoria, El Caballo y La Canoa. El objetivo de este
estudio fue de hacer inferencias paleoclimaticas en Sierra Nevada y Sierra del Norte-

Cordillera de Trujillo.

Los cdlculos de paleo ELA fueron realizados a partir de los métodos "Accumulation
Area-Ratio" (AAR) y de "Area-Altitude Balance Ratio" (AABR). El método de AAR
considera que durante el estado estacionario del glaciar, la zona de acumulacién ocupa
una proporcion fija de la superficie del glaciar. Para los glaciares de latitudes altas y
medias, la relacién de estas dreas estd entre 0.55-0.65 (Porter, 1975). En la regién
intertropical, esta relacion de dreas no estd del todo establecida, por lo que, los valores
reportados para esta zona involucran un grado de incertidumbre alto. Sin embargo,
considerando la hipdtesis de que en la region intertropical la zona de ablacion es mas
grande que la zona de acumulacién, las relaciones de dreas en esta regi6n son
consideradas mads altas que las reportadas en las zonas de latitudes altas e intermedias,

los valores utilizados generalmente estdn cerca de 0.8 (Kaser y Osmaston, 2002).

El método AABR considera los gradientes del balance de masas y la hipsometria del
glaciar. Este método se basa en el hecho de que los gradientes de acumulacién (b.) y
ablacion (b,) (BR= b,/b.) son lineares y conocidos. Como en el caso del método AAR,
los valores para el método AABR tampoco estdn bien determinados en la zona
intertropical; en la actualidad, los valores del balance de masas (BR) son > 3 (Kaser y
Osmaston, 2002) e incluso algunos han reportados valores de hasta 25 (Rea et al.,
2009). Los valores de AAR utilizados para realizar los célculos fueron 0.73-0.82 y para
el método AABR fueron 5 y 10.
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Los célculos de paleo ELA fueron realizados con una herramienta informética que

permite incorporarlo en ArcGis de Pellitero et al. (2015).

Resultados y discusiones

Por qué se estudio la morfologia glaciar seleccionada?

El detalle de la historia de desglaciacion en Los Andes de Mérida esta limitado por la
falta de cronologia glaciar. Diferentes valles fueron estudiados en esta tesis: valle de
Mifafi (6 muestras) en Sierra del Norte, en Sierra Nevada fueron estudiados los valles
de Mucubaji (14 muestras), Mucuchache (7 muestras) y Gavidia (24 muestras). Estos
valles fueron escogidos porque mantienen una buena preservacion de la morfologia
glaciar y permiten tener una vision global de las dindmicas glaciares en los Andes
centrales de Mérida. La Sierra Nevada es la mds estudiada porque en esta zona existen

todavia relictos de los ultimos glaciares (menos de 0.017 kmz, Braun y Bezada, 2013).

Para contribuir con la reconstruccion de la Glaciacion Mérida, fueron recolectadas
muestras de diferentes avances glaciares (representados por morrenas). Fueron
recolectadas muestras en Sierra del Norte (morrenas El Desecho, 3 muestras y en La
Culata, 12 muestras) y en Cordillera de Trujillo (morrenas de Pueblo Llano, 6 muestras
y morrena de La Canoa, 2 muestras). En la Sierra Nevada fueron recolectadas muestras
en la Sierra de Santo Domingo (morrenas de Los Zerpa, 3 muestras y Las Tapias, 3
muestras). En la parte Suroeste se estudiaron las morrenas de El Caballo (3 muestras),

Mucubaji y Mucuchache.

Las muestras fueron recolectadas en bloques morrénicos, superficies pulidas en paredes
del valle y rocas aborregadas del fondo del valle. Los sitios estaban lo suficientemente
altos para minimizar errores en las edades de exposicion debido a su posible

recubrimiento por sedimentos.

Historias de desglaciacion

Las edades de exposiciéon o abandono de las morfologias glaciares estudiadas varian

entre 9.5+1.1 y 83.743.4 ka. De una forma maés precisa, las edades obtenidas en Sierra
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Nevada varian entre 9.5+1.1 y 37.0£1.6 ka, en Sierra del Norte varian entre 16.0+0.6 y

19.242.1 ka y en Cordillera de Trujillo varian entre 17.6+1.6 y 83.7+3.4 ka.

Diferentes historias de desglaciacion fueron determinadas en los Andes centrales de
Mérida al menos desde el MIS 3. En los valles de Mucubaji y Mucuchache, la dindmica
estuvo caracterizada por varios episodios de avance-estabilizacién de los frentes de los
glaciares durante el retroceso general de los mismos. En los valles de Gavidia y Mifafi,
la desaparicion de los glaciares fue mas rdpida, con velocidades de retroceso

longitudinal muy altos (entre 4-7 km/ka).

En el valle de Mucubaji, las evidencias estudiadas hasta la fecha de la actividad glaciar
datan desde el LGM hasta el Holoceno a 6 ka. En el valle de la Mucuchache las edades
de exposicion indican que las morfologias estudiadas fueron abandonadas entre el MIS
3 hasta el periodo entre el LGM-OtD hace unos 18 ka (Oldest Dryas). La zona alta de
este valle no ha sido estudiada por lo que en esta tesis la historia de desglaciacién en
este valle se interpreta hasta hace 18 ka. En el valle de Gavidia, el glaciar retrocedié en
dos periodos, uno entre 21-16.5 ka y otro entre 16.5-16.0 ka. La velocidad de retroceso
en horizontal durante el periodo entre 16.5 ka y 16 ka fue mas rdpido (4 km/ka).
Mientras que en el valle de Mifafi la velocidad de retroceso del glaciar en horizontal fue
extremadamente alta a edades entre 17-18 ka (7 km/ka). En los valles de Gavidia y
Mifafi la desapariciéon completa de los paleoglaciares tom6 entre 0.5-1.0 ka. Estos valles
presentan caracteristicas morfométricas similares como la topografia del circo glaciar y
la orientacion NE-SO de la zona de acumulacién. Esta configuracion hace que las zonas
de acumulacién de estos glaciares hayan recibido mds radiacion solar que las zonas de
acumulacién de los valles de Mucubaji y la Mucuchache cuya orientacién es de NO-SE.
La comparacién de las diferentes curvas hipsométricas de los paleoglaciares de
Mucubaji, Mucuchache y Mifafi entre 17-18 ka indica que en la Sierra Nevada
(Mucubaji, Mucuchache) el area de las zonas de acumulacién varia entre 60-70%
mientras que para Mifafi este valor era de 20 %. El area de las zonas de acumulacién
también controla el retroceso rdpido de los paleoglaciares. Caracteristicas
morfométricas como pendiente del fondo del valle, la topografia de la zona de
acumulacidn (circos glaciares con paredes de alta inclinacion), extension de las zonas de
acumulacién (hipsometria) y su orientacion, también controlaron las diferentes historias

de desglaciacion.
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Contribucién a la reconstruccién de la Ultima Glaciacién en los Andes centrales de
Meérida

Informacién sobre la glaciacién previa a la Ultima Glaciacién (antes del MIS 5) es muy
escasa, sOlo algunas evidencias han sido encontradas en la seccion LAG de Mesa del
Caballo (3500 m). Los avances glaciares durante el MIS 4 y MIS 3 son observados en la
Cordillera de Trujillo (valle de Pueblo Llano a 2500 m) y en Sierra Nevada (valle de
Mucuchache y El Caballo a 3600 m y 3400 m, respectivamente). Los avances ocurridos
durante el LGM soélo fueron evidenciados en Sierras Nevada-Santo Domingo en
Mucubaji a 3500 m y Las Tapias a 3100 m. Otro grupo importante de avances glaciares
ocurrieron durante el periodo entre el LGM-OtD, en el valle de Mucubaji entre 3570 m
et 3620 m. En Sierra de Santo Domingo los glaciares durante este periodo llegaron a los
3100 m, mientras que en la Sierra del Norte llegaron a altitudes entre 3100 m y 3500 m,
por ultimo, en la Cordillera de Trujillo fue registrado el avance glaciar a 2800 m
(morrena La Canoa). Con respecto al Younger Dryas, hasta la fecha, pocas evidencias
se han obtenido acerca de avances glaciares ocurridos durante este periodo frio, s6lo han
sido reconocidos en Sierra Nevada a altitudes superiores a 3800 m (3862 m y 4000 m en

los valles de Mucubaji y el Macizo Humboldt respectivamente).

A escala regional, la relacion entre avances glaciares y sus respectivas altitudes no es
evidente. Los avances glaciares fechados durante el MIS 4, MIS, 3 y MIS 2 en diversas
ocasiones son encontrados a elevaciones similares. La Glaciacion Mérida fue
establecida en base al estudio geomorfoldgico, geocronoldgico y sedimentoldgico de
dos cordones morrénicos localizados entre 2600-3500 m (Schubert, 1974). La
definicién original de la Glaciacion Mérida fue una primera buena aproximacién para
comprender la Ultima Glaciacién en los Andes de Mérida, sin embargo, edades de
desglaciacion obtenidas recientemente por Guzméan (2013) o las obtenidas en Sierra
Nevada y Cordillera de Trujillo en esta tesis, indican que todavia es necesario continuar
con el desarrollo de estudios cientificos que permitan comprender mejor la Ultima

Glaciacion en esta region.

Los avances glaciares durante el MIS 3 (observados en Mucuchache, El Caballo y
Pueblo Llano) suministraron informacién nueva en la cronologia de la Glaciacién

Meérida. Si es considerado el modelo original establecido por Schubert (1974),
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Mucuchache (3400 m) y El Caballo (3600 m) estarian relacionados con la Glaciacién
Meérida Tardia mientras que las morrenas de Pueblo Llano a 2500 m podrian estar
relacionada a la Glaciaciéon Mérida Temprana. Los resultados de edades de exposicion
obtenidos en esta tesis indican finalmente que el abandono de estas morrenas
ocurrieron durante el Interestadio El Pedregal, el cual, fue identificado en los Andes de

Mérida entre 25-60 ka (Dirszowsky et al., 2005; Rull, 2005).

La mayoria de los avances de glaciares maximos fueron identificados a edades mas
jovenes que el LGM sensu stricto particularmente durante el periodo entre el LGM-OtD

(17-19 ka). Algunos avances maximos estuvieron relacionados también con el MIS 4 y

MIS 3.

Paleo Linea de Equilibrio Glaciar (ELA)

Los valores de paleo ELA obtenidos por cada método (AAR, AABR) para cada
paleoglaciar, no muestran diferencias significativas y esto por lo tanto permite

determinar un valor de paleo ELA promedio. En general, los valores se encuentran entre

3475427 m en La Canoa y 4397433 m en Mifafi.

En Sierra Nevada a 30 ka la paleo ELA estaba a 3765+37 m (Mucuchache) y 3839+20
m (El Caballo). Entre 20-22 ka se encontraba a 3882+27 m (Mucuchache) y 3808439 m
(Mucubaji). Las diferencias mds significativas que existen entre las paleo ELA ocurren
entre Sierras Nevada y Santo Domingo a ~ 18 ka (e.g. at 18 ka Mucuchache

ELA=3965+30 my La Victoria ELA=3669+24 m).

Contribucion paleoglaciologica al registro paleoclimdtico en los Andes centrales de

Mérida

Las condiciones paleoclimdticas como la temperatura y la precipitacion pueden ser
determinadas a partir del andlisis de las paleo ELA (e.g. Lachniet Vazquez-Selem,
2005; Stansell et al., 2007; Smith et al., 2011). Sin embargo, es importante recordar que
en la zona intertropical, las relaciones utilizadas para hacer los cdlculos de este

parametro (AAR et AABR) no estdn bien establecidos (e.g Rea et al., 2009). Es
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importante tener en cuenta que en esta region, las interpretaciones paleoclimaticas estan

acompanadas de una incertidumbre no cuantificable.

Los valores de paleo ELA obtenidos en esta tesis estdn en el mismo orden que los
valores reportados por otros trabajos como Lachniet y Vazquez-Selem (2005) y
Stansell et al. (2007). Los cambios de temperaturas, precipitacion, radiacién solar o la
combinacion de estos factores, son los responsables de la variabilidad en los glaciares

tropicales (Kaser and Osmaston, 2002).

El valor de paleo ELA mas bajo (3765437 m) fue calculado para el valle de
Mucuchache durante el MIS 3. Este valor correlaciona con condiciones climdticas mas
calidas en los Andes de Mérida en comparacion con el LGM (calentamiento relativo de
5 °C en comparacién la temperatura actual; Dirszowsky et al., 2005; Rull, 2005),
también correlaciona con condiciones més cdlidas en el Hemisferio Norte segin el
registro de is6topos de oxigeno y condiciones mds himedas en comparacién con el
LGM o post-LGM en el norte de Suramérica. Por lo tanto, los avances glaciares de los
valles de Mucuchache y El Caballo parecen haber sido controlados por variaciones en la

paleoprecipitacion.

Las diferencias mas significativas de los valores de paleo ELA se tienen para periodos
post-LGM (<18 ka). Las variaciones de las paleo ELA entre Sierra Nevada y Santo
Domingo fueron atribuidas a variaciones en la paleo precipitaciones entre las sierras
(Lachniet y Vazquez-Selem, 2005), sin embargo, Stansell et al. (2007) sugirié que las

mismas fueron producto de variaciones de las paleo temperaturas.

Las mayores variaciones de paleo ELA se observan al comparar los valores entre Sierra
del Norte y Sierra Nevada-Cordillera de Trujillo, se pudo observar un gradiente
significativo N-S y NE-SO. Esto indica que las precipitaciones en estas zonas fueron
contrastantes entre los diferentes valles por lo menos durante el periodo entre 16-19 ka.
El valle de Mifafi en Sierra del Norte fue la zona més seca (4397433 m) mientras que
los sectores mads humedos fueron Sierra de Santo Domingo (e.g. 3665+89 m) y
Cordillera de Trujillo (3475+27 m). Esta distribucion de paleo precipitaciones es
semejante a la distribucién que registra actualmente esta variable climdtica en los Andes

centrales de Mérida.
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Conclusiones y Perspectivas

Esta tesis contribuye con el conocimiento de la Ultima Glaciacién en los Andes de
Mérida. Las cronologias de exposicién de las morfologias glaciares fueron obtenidas
utilizando el método de isGtopo cosmogénico producido in situ '’Be. Las 100 muestras
presentadas en esta tesis aportan informacion valiosa que en conjunto con las
cronologias ya publicadas, permiten tener un conocimiento més detallado de la Ultima
Glaciacién en la region. Dichos resultados y sus interpretaciones también contribuye

con el conocimiento del paleoclima tropical.
Historias de desglaciacion y sus origenes

Diferentes historias de desglaciacion fueron establecidas en esta regién durante el
Pleistoceno Tardio. El derretimiento de los glaciares de una forma muy répida entre 0.5-
1.0 ka ocurri6 en los valles de Mifafi y Gavidia post-LGM, especificamente hace 18-16
ka. En los valles de Mucuchache y Mucubaji las dindmicas fueron diferentes; en dichos
valles se reportan las presencias de grandes morrenas que representan periodos de
avance-estabilizacion de los glaciares durante su retroceso generalizado, en estos valles

la desaparicion de los glaciares fue de una forma més gradual.

Las diferentes historias de desglaciaciéon podrian ser explicadas por las diferentes
caracteristicas morfométricas que presentan los diferentes valles. Dichas caracteristicas
son: diferentes pendientes del fondo de los valles, diferentes orientaciones y drea de las

zonas de acumulacion.
Reconstruccion de la Ultima Glaciacion (Glaciacion Mérida)

Los avances glaciares reconocidos en la tesis estdn ligados a los periodos comprendidos
entre el MIS 4 y MIS 1. No se observé una correlacion entre elevaciéon y avances
glaciares. Fueron identificados por primera vez los avances relacionados al MIS 3 y
hasta la fecha, pocos avances han estado relacionados al periodo Younger Dryas, sélo

en Mucubaji a elevaciones mayores a los 3800 m.
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Contribucion paleoglaciolégica al registro paleoclimatico de Los Andes centrales

de Mérida

Durante el LGM fueron inferidas condiciones climdticas similares entre los valles de
Mucubaji y Mucuchache (Sierra Nevada). Esta deduccion se obtiene a partir de la
comparacion de los valores de paleo ELA, los cuales resultaron ser mds similares que
para el periodo post LGM (3882427 m y 3808+39 m, respectivamente). El patron de
precipitaciones entre los 16-19 ka (LGM-OtD-El Caballo) parece ser similar al que se
aprecia actualmente en la region, siendo los sectores mds humedos los correspondientes
a la Sierra de Santo Domingo-Cordillera de Trujillo y el mas seco correspondia al valle

de Mifafi.

Los avances glaciares relacionados al MIS 4 y MIS 3 estuvieron relacionados a una
fuerte actividad de la Zona de Convergencia Intertropical que generaban mas
precipitaciones en el Norte de América del Sur y temperaturas mds calidas (comparadas
con las presentes durante el LGM) en los Andes centrales de Mérida (periodo conocido
como el Interstadio El Pedregal). Los avances glaciares durante el MIS 2 estuvieron
principalmente asociados a las bajas temperaturas en el Hemisferio Norte y las mas

bajas temperaturas registradas en los Andes tropicales.

Perspectivas

En los Andes de Mérida atin quedan varias morfologias glaciares atn sin determinar su
edad de exposicion. Este hecho ofrece la oportunidad de realizar mds trabajos de
cronologia glaciar en otros valles glaciares de la region. Especial interés debe realizarse

en estudiar historias de desglaciacion antes del LGM y durante el YD.

Con respecto al topico del paleoclima tropical, los resultados de esta tesis pueden
contribuir con la cuantificacién de las condiciones paleocliméticas utilizando los valores
de paleo ELA y la modelizacién de los paleo glaciares (e.g. Plummer and Phillips,
2003). También seria muy provechoso integrar los valores de isétopos estables

obtenidos durante el desarrollo de esta tesis y una colaboracién con el CSIC (Espafia).

La cronologia glaciar obtenida en esta tesis también puede ser utilizada para hacer

estudios de Neotecténica en los Andes centrales de Mérida. También podrian ser
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realizados estudios para determinar volimenes de agua liberados durante la

desglaciacion, estudiar balances hidricos y de transporte de sedimentos.
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GENERAL INTRODUCTION

Changes in the present-day climatic conditions impact society in different aspects.
World climate in an overall scale is controlled by atmospheric, oceanic and terrestrial
interactions supported by solar radiation. Tropical areas receive most of the solar
radiation and heat is distributed to the North and South Hemisphere by atmospheric and
oceanic circulation (e.g. Chiang, 2009). Last Glaciation climate changes have been
related to reorganizations in the atmosphere circulation from the tropics, impacting
Atlantic Meridional Overturning Circulation (AMOC) (Chiang, 2009). Therefore, a
better characterization of the present and past tropical climate is key to understand the
present and past global climates. Results should allow constraining climate models and

improves future climate projections and society impacts of the climate changes.

Tropical glaciers are known to be extremely sensitive to global climate change and also
an important water resource, especially for populations of the Peruvian and the Bolivian
altiplanos (e.g. Hastenrath, 1985; Kaser and Osmaston, 2002). Glacier landforms from
tropical former glaciers offer an attractive proxy for the study of past tropical
glaciations and palaeoclimate conditions (Jomelli et al., 2009). Previous studies have
been carried out using ice cores (e.g. Thompson et al., 1995; Thompson et al., 1998;
Ramirez et al., 2003) and using former or paleo glacier landforms (e.g. Stansell et al.,
2007; Jomelli et al., 2009).

For better determining paleoclimate conditions using former glaciers is necessary to
well understand glaciations extensions and timing. In the tropics, glaciations
reconstructions in the tropical Andes are the most documented (e.g. Porter, 2001;
Jomelli et al., 2009). Among them, the Venezuelan Andes, called the Mérida Andes
(MA), is one of the tropical areas most affected by glaciations. However, glaciations
reconstructions are less detailed (Porter, 2001; Lachniet and Vazquez-Selem, 2005;

Coronato and Rabassa, 2007).

In the MA a detailed bibliographic compilation about glacial landforms observations
were made by Schubert (e.g. 1972; 1974; 1980; 1992 and 1998). Conversely to glacial
landforms descriptions, glaciations timing is poorly constrained. Geochronological data
is not regionally uniform and enough to allow a more detailed reconstruction (e.g.

Porter, 2001; Coronato and Rabassa, 2007). Geochronological studies were based on
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radiocarbon chronology (Schubert, 1970; Salgado-Laboriau and Schubert, 1977;
Schubert and Rinaldi, 1987; Rull, 1998; Mahaney et al., 2001; Dirszowsky et al., 2005;
Stansell et al., 2005; Mahaney et al., 2007 and Carrillo et al., 2008),
thermoluminescence (TL) (Schubert and Vaz, 1987 and Bezada, 1989), optically
stimulated luminescence (OSL) (Mahaney et al., 2000) and more recently, Terrestrial
Cosmogenic Nuclide (TCN) dating (Wesnousky et al., 2012; Guzmaén, 2013; Carcaillet
et al., 2013).

This dissertation mainly contributes in three aspects. Firstly, in reconstruct deglaciation
histories and glaciers advances in the central MA during the late Pleistocene. Secondly,
studying Quaternary glaciers variabilities and deducing its causes. Third, deducing
paleoclimate conditions and compare to local, regional and global paleoclimate proxy

records.

This dissertation attempts to represents a contribution to our understanding of tropical

Andean glaciations and tropical paleoclimate variability answering the next questions:

- How were the deglaciation histories in the central MA during the late
Pleistocene? Is there any geographical trend?

- How many distinct glaciers episodes could be identified in the central MA? Is
there any correlation between glaciers advances and elevations? How was the
extent of the Last Glacial Maximum (LGM) period in the MA?

- What are possible causes of late Pleistocene glaciers variabilities in the central
MA?

- What can be our contribution to the Mérida Andes paleoclimate knowledge?

In order to answer these questions in this dissertation, a paleoglaciological study was
developed. Geomorphological analysis focus in glacial landforms was carried out to
select the study area and samples locations whereas the Terrestrial Cosmogenic

Nuclides (TCN) using the '"Be nuclide dating was selected as geochronological method.
This dissertation was divided in three parts (Part I, Part I and Part III).

Part I: General introduction and methods. This section provides fundamental aspects

about tropical glaciations and tropic climate and an overview of the geological and
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geomorphic context of the Mérida Andes. A detailed section on the methods and

materials is presented. Part I is constituted by sections I, 1I, III and IV.
Part II: “Results”

This section provides details on input parameters used to compute ages from TCN
measurement as well as raw data and geomorphological setting of sampled valleys.
ELA (Equilibrium Line Altitude) results are presented. Part II is constituted by section
V.

Section V includes two scientific papers:

Carcaillet, J., Angel, 1., Carrillo, E., Audemard, F.A. and Beck C. 2013. Timing of the
last deglaciation in the Sierra Nevada of the Mérida Andes, Venezuela. Quaternary

Research, Vol. 80(3): 482-494.,

Angel, I., Audemard, F., Carcaillet, J., Carrillo, E., Beck, C., Audin, L. “under review”.
Deglaciation chronology in the Gavidia valley, Mérida Andes, Venezuela, inferred from

cosmogenic 'Be dating. Journal of South American Earth Sciences. SUBMITTED

Part III: Discussions. This section discusses the results in an overall frame. Namely,
the geomorphic and climate factors controlling the former glacier evolution are
discussed. Global, regional and local climate correlations are examined. Part III is

constituted by sections VI and VII (Conclusions and perspectives).
Other articles and abstracts related to the PhD project:

- Angel, L., Carcaillet, J., Carrillo, E., Audemard, F. and Beck, C. gh IAG,
International Conference on Geomorphology, Paris, France 2013. Glacial
chronology in the Mérida Andes, Venezuela, deduced from cosmogenic 10ge

radionuclide dating.

- Angel, L., Carcaillet, J., Carrillo, E., Audemard, F. and Beck, C. Nordic
Workshop on Cosmogenic Nuclide Dating, Aarhus, Denmark, 2014. Glacial
chronology deduced from cosmogenic '’Be radionuclide dating in La Culata,

Gavidia and Mucubaji valley, Venezuelan Andes.
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http://www.sciencedirect.com/science/article/pii/S0033589413000860
http://www.sciencedirect.com/science/article/pii/S0033589413000860

Angel, 1., Audemard, F., Carrillo, E., Carcaillet, J. and Beck, C. ler Congreso
Venezolano de Geoquimica, Caracas, Venezuela, 2014.El is6topo cosmogénico
"“Be en la cronologia de morfologia glaciar en los valles de Gavidia y La Culata,

Andes Venezolanos.

Angel, 1., Carcaillet, J., Audemard, F., Carrillo, E., Condom, T., Audin, L. and
Beck, C. XIX INQUA Congress, Nagoya, Japan, 2015. Asynchronous

deglaciation histories in the central Venezuelan Andes.

Angel, 1., Carrillo, E., Carcaillet, J., Audemard, F.A. & Beck C. 2013.
Geocronologia con el isétopo cosmogénico Be, aplicacion para el estudio de la

dindmica glaciar cuaternaria en la region central de los Andes de Mérida.

GEOS. Vol-44: 73-82. In Appendix.
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PART I. SECTION I. GLACIATIONS, TROPIC CLIMATE, TROPICAL
GLACIERS AND ANDEAN GLACIATIONS

The Sections I and II provide fundamentals aspects and a tropical Andes glaciation
state of arts. These sections attempt to continuing reflect the importance of developing
studies on tropic paleoclimate and the Mérida Andes glaciations. Since the results
correspond to the Last Glacial cycle, concepts about glaciations and climate events
during this period are presented in Section I. A background about climate of the tropics,
tropical glaciers behaviors and a tropical Andean glaciations state of arts is presented.
Concepts about tropical glaciers mass balances and paleo equilibrium lines altitudes
(ELA) are also presented. The Section II focuses on approaches for reconstructing and

dating Quaternary glaciations, emphasizing its different applications and limitations.

I-1.0 Quaternary Glaciations background

I-1.1 Generalities and causes
The Quaternary Period is related to considerable climate instabilities and subdivided
into glacial and interglacial periods. Glacial periods are cold phases of major expansion
of glaciers and ice sheets. Interglacial are warmer and generally wetter periods (Nesje

and Olaf Dahl, 2000).

Northern Hemisphere ice sheets (Laurentide and Finno-Scandinavian) formation was
originally related to variations observed in astronomical parameters. Specifically, with
changes in the Pliocene Earth inclination axis (Uriarte, 2003). Low values involve high
orbit eccentricity, and maximum distance between Earth and Sun during summer
solstice in the Northern Hemisphere. Therefore, summers were colder and climate
conditions allowed glaciations onset. Another important condition to glaciation
initiation involves more snow precipitations during winter time. For that purpose,
warmer oceans were necessarily involved, in order to provide high humidity toward the

Northern Hemisphere (Uriarte, 2003).

One explanation involves a North-Atlantic relative warm, because of the Mexican Gulf
strong current circulation (Uriarte, 2003). It provides abundant snow precipitations in
the Northern Hemisphere. Another cause was proposed by Haug et al. (2005), based on

alkenone unsaturation ratios and diatom oxygen isotope ratios studied in a sediment
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core of the western subarctic Pacific Ocean. Results indicate that 2.7 million years ago
late summer sea surface temperatures increased in this ocean region. At the same time,
winter sea surface temperatures cooled. Winter icebergs became more abundant and
global climate evolved into glacial conditions. Summer warming extended into the
autumn in the Pacific Ocean, and this fact, provided water moisture in the northern
North America. Precipitation produced snow, thus allowing the initiation of Northern

Hemisphere glaciation.

The recurrence period of Earth glacial cycles between 1.5 and 0.6 Myr were every ~41
kyr. After 0.6 Myr, glaciations cycle were mainly each ~100 kyr, traducing the obliquity
cycles of the Earth (Rutheford and D Hondt, 2000). The first glaciation frequency of 41
kyr were explained by astronomical variations (e.g. Rutheford and D Hondt, 2000;
Uriarte, 2003). Until present, the mechanisms behind large amplitude glaciations
oscillations (100 kyr) remain poorly understood. Significant discussions oppose two

main theories, the astronomical one and the geochemical theory (Paillard, 2015).

Glaciations each 100 kyr seems to be related to low atmospheric carbon dioxide content
during glaciations periods, based on studies from Antarctica ice cores (Paillard, 2015).
The atmospheric CO, partial pressure increases significantly, by about 50 ppm, several
millenia before any important change in a continental ice volume. Therefore, an active

role of greenhouse gases seems to be related to the ice age initiation.

I-1.2 Glacials and interglacials classifications and limitations
Different parts of the world assigned different glacial and interglacial names based on
stratigraphic correlations on terrestrial glacial deposits in Europe and North America
(Table I-1). One classification was assigned for European Alps, other one for
northwestern Europe and other for Central North America. These classifications are

still used, but are too general and misleading (Nesje and Olaf Dahl, 2000).

Glacial and interglacial periods are more recently proposed based on oxygen isotope
records, deduced from fossils and microfossils analyze in marine sediments cores
(Nesje and Olaf Dahl, 2000). The marine isotope signal is mainly controlled by the
global volume of terrestrial ice. Isotopic signal fluctuations can be considered as a

record of glacial and interglacial fluctuations. A system of marine isotope stages (MIS)
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was developed and used to note glacial chronologies in this dissertation (Figure I-1).
Isotope stages have a given number, even numbers reflecting stadial cold stages, while
odd numbers denote interstadial warm phases. The deep sea oxygen record is global and
therefore geographically consistent (Shackleton and Opdyke, 1973; Nesje and Olaf
Dahl, 2000).

Table I-1. Main glacial and interglacial periods of Western Europe and North
America following the classical system (From Nesje and Olaf Dahl, 2000). From

younger to older interglacial in italics, glacials in bold.

European Alps Norwest Europe Britain North America

Wiirm Weichsel Devensian Wisconsinan

R/W Eem Ipswichian  Sangamon
Warthe

Riss Saale Wolstonian lllinoian
Drenthe

M/R Holstein Hoxnian Yarmouth

Mindel Elster Angilan Kansan

G/M Cromerian Cromerian  Aftonian

Gunz Nebraskan
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Figure I-1. Marine Isotopes Stages (MIS) for the last 1.8 Ma. Even numbers reflect
stadial glacial/cold stages, while odd numbers denote interstadial interglacial/warm
phases. This graphic is based on the LR04 880 stack (constructed by the graphic
correlation of 57 globally distributed benthic 680 records) (Modified from Lisiecki and
Raymo, 2005).
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I-1.3 Last Glaciation and climate events involved
All the results presented in this dissertation are related to the Last Glaciation and
different climates events presented in this subsection I-1.3.

I-1.3.1 Last Glaciation
Last Glaciation began around 115 ka ago (Uriarte, 2003). Artic marine sediments
indicate a thermohaline circulation reduction and an ice sheets extension (Uriarte,
2003). Based on Milankovicth cycle, Last Glaciation should begin first in the Northern
Hemisphere (Uriarte, 2003). However, paleoclimate reservoirs in the Southern
Hemisphere indicate that it began almost at the same time. In the Southern Hemisphere,
climate conditions became colder (Uriarte, 2003). Glaciers advances happened in the
Patagonia and ice sheet extension in Antarctica (Uriarte, 2003). Explanations about the
glaciation variation from the Northern to the Southern Hemispheres are still not

understood and must be clarified to better understand future climate changes.

A possible factor, which controls Last Glaciation evolution between hemispheres is
related to the Tropics climate. Specifically, water moisture in the troposphere could be
related (Uriarte, 2003). During cold climate conditions, subtropical areas became drier
and water moisture decreased from 0.1% to 0.01% leading to a decrease of infrared
emission of 26 W/m?” (Pierrehumbert, 1998). Last Glaciation propagation in the planet
could be explained by humidity changes in the Tropics, due to this infrared emission
reduction (Uriarte, 2003). Also Last Glaciation climate changes could be explained by
reorganizations in the atmosphere from the Tropics which impacted Atlantic Meridional
Overturning Circulation (AMOC). Thus, the Tropics could play a key-role on the
climate changes initiated by the North Atlantic (Chiang, 2009). Therefore, studies to
contribute to better understand paleoclimate conditions in the tropics and its role on

globalizing glaciations are necessary.

An overall Last Glaciation division is made on the basis of significant sea level changes
during the last 115 ka. Three sub-divisions are proposed: 115-80 kyr, 80-30 kyr and 30-
19 kyr before present (Figure I-2). Marine Isotopes Stages related to the Last Glaciation
go from MIS 5 to MIS 2. Based on the LR04 30 stack variations (Lisiecki and
Raymo, 2005), coldest climate temperatures are related to MIS 2 whereas warmest

climate conditions are related to MIS 5 (Figure 1-2).
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0 50 ‘IlIJO 150 ka

MIS 5

MIS 1

Figure I-2. Marine Isotopes Stages (MIS) last 190 ka. Last Glaciation is related to MIS
1 until MIS 5. Horizontal bars indicate the length of each stage. Rectangles red, gray
and orange indicate the overall Last Glaciation subdivision based on sea level changes.
This graphic is based on the LR04 8'°0 stack (constructed by the graphic correlation of
57 globally distributed benthic 680 records) (Modified from Lisiecki and Raymo,
2005).

I-1.3.2 Dansgaard-Oeschger (D-O) and Heinrich events

The last glacial cycle was characterized by several of abrupt/millennial-scale climate
variations, based on high-resolution ice-core and marine sediment records (e.g.
Heinrich, 1988; Dansgaard et al., 1993; Bond et al., 1999; Alley et al., 2003). The
Greenland ice core records indicate evidences of large and rapid (few decades) shifts in
air temperature (up to 15 °C) during the last 110 ka (Stuiver and Grootes, 2000; NGRIP
members, 2004; Huber et al., 2006). Twenty-five rapid changes between stadial (cold)
and interstadial (warm) conditions were identified with an average spacing of ~1.5 ka.
These are named Dansgaard-Oeschger (D-O) events (NGRIP members, 2004).
Sediment cores from the North Atlantic show that D-O events are associated with
changes in Atlantic Meridional Overturning Circulation (AMOC) (Boyle, 2000). Each
cycle of fast temperatures drops lead to a Heinrich Event. It involves a massive iceberg
discharge during which, ice-rafted debris (IRD) in the North Atlantic (between 40 and
55°N) was widespread (Naafs et al., 2013).
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I-1.3.3 Last Glacial Maximum
The term ‘Last Glacial Maximum’ (LGM) refers to the maximum extension of
worldwide ice volume during the Last Glacial cycle (Hughes and Gibbard, 2014). The
LGM was originally described by CLIMAP Project Members (1976, 1981) as the
interval 23-14 '*C-ka BP with a mid-point at 18 "*C ka BP (Shackleton et al., 1977). It
was identified by two independent proxies: in the marine isotope record and changes in

global sea level (Mix et al., 2001).

The 5'®0 signal in the marine record is known to be shifted to the global maximum ice
volume (Mix et al., 2001; Thompson and Goldstein, 2006). Consequently, the global
sea-level minimum is likely to be closer to the accurate global Last Glacial Maximum
(Hughes and Gibbard, 2014). Based on evidences of global sea-level changes from
sediments of the northern Australia continental margin, Yokoyama et al. (2000)
concluded that the global land-based ice volume was at its maximum from at least 22-
19 cal. ka BP. As noted earlier, the age of 21 cal. ka BP is now widely used as a time
marker of the global LGM (Mix et al., 2001; MARGO Project Members, 2009).
However, Shakun and Carlson, (2010) suggested a global average age of 22.2 + 4.0 ka
best defines the LGM, based on 56 terrestrial records.

I-1.3.4 Late Glacial (LG)
Late Glacial is a period related to the sequence Oldest Dryas (OtD), Bglling, Older

Dryas, Allergd, and Younger Dryas (YD). These episodes were originally defined as
periods of biostratigraphic change reflected in terrestrial records in Denmark (Iversen,
1954). These episodes are widely used in other geological contexts, and in areas for
which they were never initially intended. In this dissertation Blunier et al. (1998)
classification was used. Authors propose: the Oldest Dryas stadial (17,50 to14,60 Cal
kyr BP), the Bglling warming interstadial (14,60 to 14,10 Cal kyr BP), the Older Dryas
cold stadial (14,10 to 13,90 Cal kyr BP), the Allergd warming interstadial (13,90 to
12,85 Cal kyr BP) and the Younger Dryas stadial (12,85 to 11,65 Cal kyr BP).

1-2.0 Tropical Andes, climate and glaciers behaviors

This section presents an overview of tropical climate and tropical glaciers behaviors.

Differences in glaciers dynamics between tropical and temperate areas are detailed.
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I-2.1 Climate of the tropical Andes, overview
The tropical zone can be divided into two sub-zones with different climate

characteristics (Figure I-3). Troll (1941) distinguished the inner tropical climate with
homogeneous annual precipitation. Outer tropics are characterized by a dry season from
May to September, when subtropical conditions prevail. Meanwhile, a wet season

happens from October to March, when tropical conditions prevail.

80°W 60°W 40°W
13°N
Inner tropics

Outer tropics

Figure I-3. Andes inner and outer tropics locations based on Rabatel et al. (2013). Venezuela,
Colombia and Ecuador belong to the inner tropics (orange rectangle) whereas Peri and
Bolivia belong to the outer tropics (red rectangle). This tropical area is affected by different

tropical easterlies directions close to the Equator (Modified from Rodbell et al., 2009).

In the tropical area the climate is characterized by homogeneous annual temperature,
with a slight seasonality of air temperature in the outer tropics. This temperature
variation is 1° to 2 °C during the austral wet summer (October-March) higher than the

austral dry winter (May-September) (Rabatel et al., 2013).

In the tropical zone, annual incident solar radiation is also fairly constant. The
seasonality of the solar irradiance in the outer tropics is attenuated by pronounced cloud
cover seasonality (maximum during austral summer) (Rabatel et al., 2013). In the inner

tropics, moisture remains almost unchanged throughout the year. Meanwhile, the outer
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tropics are characterized by pronounced seasonality of specific moisture, cloud cover

and precipitation (Rabatel et al., 2013).

In the Tropics the annual precipitation is controlled by the seasonal migration of the
Inter Tropical Convergence Zone (ITCZ). The ITCZ could be defined as the area in the
vicinity of the equator of trade wind convergence, ascending air, low atmospheric
pressure, deep convective clouds and heavy precipitation (Henderson-Sellers and
Robinson, 1986). The ITCZ migrates seasonally in the tropical Atlantic. It reaches
maximum northern latitude at 10° N in August and maximum southern latitude at 1° S in

March (mean latitudes at longitude 30° W) (Nobre and Shukla, 1996).

Precipitation in the tropical Andes is derived from the tropical Atlantic Ocean via the
tropical easterlies winds (Poveda et al., 2006). Humidity is transported to the high
Andes via convective circulations over the eastern tropical Andes. The gigantic Amazon
basin and the rain-forest mainly influence the precipitations in the central tropical Andes
during May-September (Figure 1-4). The trajectory of the easterlies and the seasonality
of precipitation are governed by the annual displacement of the ITCZ. The outer tropics
of the Southern hemisphere (e.g., La Paz, Bolivia; 16°S) thus experience a single
marked wet season during the peak summer months. Whereas the humid inner tropics
(e.g., Quito, Ecuador; 0.5° S) experiences two wet seasons. One wet season during the
spring, with the southward passage of the belt of convective activity (ITCZ). Another
one, during the fall with its northward returns (Rodbell et al., 2009). In addition to the
marked seasonality of precipitation, strong trans-andean precipitation gradients exist
(Rodbell et al., 2009). The wettest parts of the tropical Andes are in the eastern foothills,
where mean annual precipitation can exceed 4000 mm (Hoffman, 1975). In contrast, the
western Andes experience much lower mean annual precipitation, commonly <1000

mm (e.g., 650 mm for Huaréz, Peru).

Inner tropical glaciers receive precipitation all year round and are most sensitive to
changes in temperature (Kaser, 2001). Meanwhile, outer tropical glaciers have an
annual mass-balance sensitive to variations in both precipitation and temperature (Kaser

and Georges, 1997).
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AMAZON
Figure I-4. Schema to show the Amazon basin and rain-forest influence in the central

tropical Andes precipitations (P) during the May-September. Moisture from the Amazon
is transported by the trade winds (Vq) (Modified from Poveda et al., 2006 ).

The tropical area receives most of the Earths sun radiation. Heat is distributed to the
North and South Hemisphere by atmospheric and oceanic circulation. Therefore,
tropical area plays an important role in the current and past global climate. It seems to
be related to glaciations propagations in both hemispheres: 1) due to moisture
troposphere variations and 2) because of atmospheric reorganizations impacting the
AMOC. Therefore, understanding present and past tropical climate variability is key to
model the global climate evolution. Special interest is dedicated to develop
paleoclimates studies in tropical South America because current models that simulate
past and future climates have significant deficiencies (e.g. Li et al., 2006; Yin et al.,
2014). Proxy paleoclimate studies are scarce, when a comparison to the mid- and high-
latitudes of both hemispheres is attempted (Jomelli et al., 2009). Tropical paleoclimate
studies have been developed from different geological materials: lake sediments, marine

sediments, ice-cores and paleoglaciers or former glacier landforms.
I-2.2 Tropical Andean glaciers

By the end of the last century, total surface of tropical glaciers represented about 2500
km?. It represents around 0.15% of the global glacier area and about 4% of the mountain
glaciers area (Kaser and Osmaston, 2002). Tropical glaciers are distributed over 3
highest East African mountains (Rwenzori, Kilimanjaro and Mt Kenya), the Indonesian
Puncanck Jack in Irian Jaya and South American Andes between Bolivia and Venezuela

(23.53°N-23.53°S) (Figure I-5). 99% of tropical glacier surface is located in the Andes
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and especially in Peru and Bolivia (Kaser and Osmaston, 2002). Tropical Andes
glaciers are an important water resource for populations of the Peruvian and Bolivian
altiplanos. Glaciers provide water for agricultural and domestic consumption as well as

power generation (Vergara et al., 2007).

23.5° N
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Figure I-5. Tropical glaciers distribution. (Porter, 2001).

Tropical glaciers are known to be extremely sensitive to climate change (e.g. Kaser and
Osmaston, 2002). Therefore, tropical glaciers offer an attractive proxy for the study of
paleoclimate conditions (Jomelli et al., 2009). Glacier response induced by a climate
change mainly depends on: a) climate (related in the mass balance) and b) the local
topography (mainly the glacier surface hypsometry) (Oerlemans, 2001). Different
relations between these factors provide glaciers variabilities even inside the same area
(Oerlemans, 2001). Paleoclimate interpretations need to consider this local variability

(Winkler et al., 2010).

In the tropics the mid-day sun is overhead at least once a year and never less than 43°
above the horizon. Tropical glaciers receive high solar radiation throughout the year
(Benn et al., 2005). Consequently, annual variations in mean daily temperatures are

smaller than diurnal temperature ranges (Kaser and Osmaston, 2002).

56



The thermal homogeneity of the tropics is in sharp contrast to the mid- and high-
latitudes, where annual temperature fluctuations are larger than diurnal variations (Benn
et al., 2005). The constancy of mean daily temperatures in the tropics means that the
0°C atmospheric isotherm is fairly stable around a constant altitude. Meanwhile ice
ablation occurs on the lower parts of glaciers all year round (Benn et al., 2005). Tropical
glaciers are differentiated from temperate glaciers because they are affected by annual

migrations of the ITCZ.

[-2.2.1 Mass balance
A glacier mass balance profile allows the estimation of the inputs (accumulation) and

outputs (ablation) of a glacial ice system. Glacier mass balance inputs include
precipitation in different forms (snow, hail, frost and rainfall) and lateral inputs
(avalanches) (Bennet and Glasser, 2009). Mass balance outputs could be produced by
four ways: ice melt, serac fall, iceberg calving and sublimation. Glacial meltwater is
derived from direct melting of ice on the surface, or within the glacier. On the surface,
melting highly depends of the solar radiation. At the base of the glacier, heat leading to
melting is supplied by ground friction of the ice flow. Also geothermal heat of the Earth
contributes to the glacier melting (Bennet and Glasser, 2009). When there is an
imbalance between accumulation and ablation, the glacier extension changes. Climate
conditions which allow more ablation than accumulation provide negative mass
balances and glaciers retreats. Whereas climate conditions which allow more
accumulation than ablation provide positive mass balances and cause a glacier advance

(Bennet and Glasser, 2009).

Tropical and temperate glaciers behavior also differs because of different mass balance
profiles (Benn et al., 2005). More significant difference is related to glacier ablation
which happens through the year in the tropical glaciers (Figure I-6 B, C). Accumulation
gradient is lower and timing is different compare to temperate glaciers (Benn et al.,
2005). Accumulation in temperate Andean glaciers happens during austral winter
(Figure I-6 A) whereas in outer tropics it happens during austral summer. The inner
tropics are mainly controlled by the ITCZ displacement providing a bimodal

accumulation regime (Figure I-6 C).
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Figure I-6. Idealized mass balance characteristics of the Andes temperate glaciers (A),
outer tropical glaciers (B), and wet inner tropical glaciers (C). Tropical glaciers have
ablation all year round and accumulation depends of its location in the inner and outer

tropics. It is controlled by the ITCZ (From Rodbell et al., 2009).

1-2.2.2 Equilibrium Line Altitudes (ELA)
The ELA refer to the altitude where bn= 0 where bn is the net mass balance at the end

of the (summer) ablation season (Figure I-7) (Paterson, 1994). This definition does not
apply in tropical regions, because there is a year-round ablation and there is a distinct
dry season (Benn et al., 2005). The annual mass balance cycles of tropical and sub-

tropical glaciers are thus highly variable (Kaser and Osmaston, 2002).
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Figure I-7. Mountain glacier representations with different parameters which allow

characterizing glaciers dynamics. Accumulation area, Ablation area, ELA: equilibrium
line altitude and Snout. In tropical glaciers ELA is located closer to the Snout, in

comparison to temperate glaciers because of more ablation gradient.

Kaser (2001) modeled the vertical mass balance profiles of glaciers in the humid inner
tropics, the subtropics, and the mid-latitudes. This author evaluated the sensitivity of the
equilibrium line altitude (ELA) to variations in precipitation, temperature, and net short
wave radiation. In the inner tropics, ELA response is far more sensitive to changes in
temperature than those in the dry subtropics (Kaser, 2001). In contrast, a small increase
in precipitation would dramatically increase these glaciers net mass balance (Robdell et
al., 2009). Sensitivity studies revealed that these subtropics glaciers are especially
sensitive to changes in atmospheric moisture (Kaser, 2001; Robdell et al., 2009).
Atmospheric moisture also affects the ratio between sublimation and melting on the ice
surface. Therefore, ELA variations in outer tropical glaciers tend to be more sensitive to

precipitation changes.

Paleoclimate studies involving former glaciers are based on the ELA steady-state. It
represents a glacier in equilibrium with climate, under a geometry configuration limited
by moraines (a depositional glacial landform better described in Section II) (e.g. Benn et
al., 2005; Stansell et al., 2007). However, special care is necessary with this approach

because nonclimatic factors could controls moraines landscape distribution (Barr and
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Lovell, 2014). For example uplift, subsidence or accumulation area topography (see

detail in section II.1.1.1.2-Topographic control).

1-3.0 Tropical Andean Glaciations

This section presents an overall overview of tropical Andean glaciations based on
reviews from Coronato and Rabassa (2007) and Smith et al. (2008). This state is
focused on Peruvian, Ecuadorian and Bolivian Andes glaciations because are the most
studied. More detailed information about the Venezuelan Andes glaciations are in
section III-2.0-Glaciation reconstruction. In this compilation, only published ages or
morphostratigraphy (see details in Paleoglaciology and Geochronological methods)
deductions based on published ages were considered. Ages used were determined using

radiocarbon dating or terrestrial cosmogenic nuclide (TCN) using "Be nuclide dating.
In this overall review studied locations are:

- Ecuador, Rucu Pichincha in the Western Cordillera at 0°12 S-78°35 W (Figure 1-8, site
1); Papallacta valley in the Eastern Cordillera at 0°20 S-78°12 W (Figure I-8, site 2);
Chimborazo-Carihuairazo volcanoes in the Western Cordillera at 1°30 S-78°50 W
(Figure I-8, site 3); and Cajas National Park in the Southern Ecuadorian Andes at 2°40,
3°00 S-79°00, 79°25 W (Figure I-8, site 4).

Facific
Ocean

508 km BOLIVI4

80°W W
Figure I-8. Location of different areas involved in the compilation of the Tropical Andes
Glaciations. Numbers are the location of the different areas. 1: Rucu Pichincha. 2:
Papallacta valley. 3: Chimborazo-Carihuairazo. 4: Cajas National Park. 5: Cordillera
Blanca valleys. 6: Junin Plain. 7: Milluni and Zongo valley, Cordillera Real (Modified
from Smith et al., 2008).
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- Pert: Cordillera Blanca valleys in the central Peru at 9°30 S-77°15 W (Figure 1-8, site
5); and Junin Plain valleys at 11° S, 76° W (Figure I-8, site 6).

- In Bolivia in the Milluni and Zongo valleys at 16° 16 S-68° 08 W (Figure I-8, site 7).

I-3.1 Previous MIS 5 and MIS 5 glaciers advances (Smith et al., 2008)
Glaciers advances before and during the early MIS 5 in Peru were evidenced in

Cordillera Blanca, based on exposure ages (TCN dating) of moraines located between
3627-3890 m (Smith et al., 2008). Exposure ages range between 76+2 and 439+13 ka
(Cojup moraines, Figure I-9). Also a previous MIS 5 glacier advance was evidenced in
the Junin plain valleys (Smith et al., 2005 a, b). Moraines boulders ages range from
51+1 ka to 1606+12 ka (TCN ages). Glaciers advances were proposed around 175-225
and 340440 ka (moraine complex (GD) located between 4168-4464 m (Figure 1-9),

where exposure ages are mainly distributed.

In Papallacta valley (Ecuador), previous MIS 5 glaciers advances could be related to
moraines complexes located at elevations < 3400 m. A lava flow partially fills the
valley and overlay the moraines. It was dated (using the fission track method) older than
150-180 ka (Heine, 1995 in Smith et al., 2008) (M1, M2, Figure 1-9). At ~2750 m in the
Chimborazo and Carihuairazo Massif, an old till deposits with different weathering
degrees was related to a previous MIS 5 glacier advance. However, chronological data
is lacking. These till deposits were correlated up to the Cajas National Park (2800 m),
similar periods of glacier advance were assumed. Previous MIS 5 glacier advance was
also evidenced in Rucu Pichincha valley based on very weathered moraines complexes
between 3500-3600 m (Heine and Heine, 1996). However, chronological data is lacking
(M1, M2 and M3, Figure I-9).

Glacier advances during MIS 5 in the Mérida Andes are related to basal till in the
Pedregal section from Mesa del Caballo (3500 m). They are also related to glaciofluvial
gravel and till from La Canoa section RF3 (2800 m) (Kalm and Mahaney, 2011).
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Figure I-9. Schematic representation of the tropical Andes glaciers advances. Location based
on moraines elevation (km asl) and ages (Radiocarbon (dots) and TCN (triangles) dates). The
symbol ? indicates a moraine complex only with a morphostratigraphy age or limit maximum
age not known. H: Holocene. Time (ka). Marine Isotope Stages (MIS). Locations 1: Rucu
Pichincha. 2: Papallacta valley. 3: Chimborazo-Carihuairazo. 4: Cajas National Park. 5:
Cordillera Blanca valleys. 6: Junin Plain. 7a: Milluni and 7b: Zongo valley, Cordillera Real
(Modified from Smith et al., 2008).
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[-3.2 MIS 3, MIS 2 and MIS 1 glaciers advances (Coronato and Rabassa, 2007; Smith
et al., 2008)

In Bolivia, MIS 3, MIS 2 and MIS 1 glacier advances were reported in Cordillera Real.
Two moraine complexes are related to MIS 3 glacier advances. Moraines located at high
elevations date between 28-35 kyr BP based on a radiocarbon age obtained from a peat
layer in till (Coronato and Rabassa, 2007), whereas moraines at low elevations were
related to an older glacier advance not identified because of lack of dating. In the
Milluni valley, Cordillera Real, two moraine complexes were dated. Old moraines (GC
at ~ 4595 m) yielded, ages (TCN) ranging from 14.5+0.4 to 31.8+1.1 ka (Smith et al.,
2005a) (Figure 1-9). Some of these moraines were related to the Local LGM (LLGM) as
suggested by the ages of two moraine levels (GC; 25-30 ka and GC, 22-26 ka, between
4595-4640 m) (Smith et al., 2005a). Young moraines at higher elevations (GB at ~ 4640
m) date from 8.2+0.6 to 16.2+0.5 ka (TCN). These moraines were related to a Late
Glacial (LG) advance (Smith et al., 2005a). In Bolivia in the Zongo valley, at least one
MIS 2 glacier advance was identified based on exposure age of 17.8+£0.9 ka and related

to a moraine complex at ~ 3400 m (Smith et al., 2005a).

In Peru in the Junin plain, based on exposure ages (TCN), three moraine complexes
were related to glacier advances during MIS 3, MIS 2 and MIS 1 (Figure I-9) (Smith et
al., 2005 a, b). The lowest complexes (GC terminal moraines) located between 4159-
4388 m are dated from 17.3+0.6 ka to 31.3+1.4. Ages are mainly distributed between
21-31 ka and 21-24 ka. These moraines were related to the LLGM. Exposure ages from
moraines located a middle elevations (GB, located between 4252-4391 m), range from
13.620.6 ka to 21.3 + 0.6 ka, with age concentration between 15-19 ka. These moraines
located at middle elevations were related to a LG re-advance (Smith et al., 2005a, b). A
younger advance was evidenced based on the higher moraine complex (GA, located
between 4392-4412 m), with age concentration between 12-14 ka. In the Cordillera
Blanca valleys, a glacier advance MIS 3-MIS 2 is represented by Rurec moraines
located between 3700-4000 m. These moraines ages range from 16.7£1.7 to 29.3+1.2 ka
(TCN dating; Farber et al., 2005; GC, Figure 1-9). MIS 2 and MIS 1 glaciers advances
were identified in Laguna Baja moraines (GB) between 3800-4000 m. Moraines

exposure ages range from 14.2+0.7 ka to 16.1+0.9 ka (Farber et al., 2005). The
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Manachaque moraines (GA, at 4045 m) were related to LG and Holocene re-advance

(TCN dating between 10.4+0.4 and 12.7+0.4 ka) (Figure I-9).

In Ecuador in the Chimborazo/Carihuairazo Massif, a MIS 3 complex moraine at 3770
m, indicates a maximum limiting age of 33.3+0.3 C ka BP, based on peat layers
underlying full glacial till (G3, Figure [-9) (Clapperton and McEwan, 1985). Two
moraines complexes (3900-4050 m and 4300-4400 m) were related at least to MIS 1
glacier advance (G2 and G1, Figure 1-9), based on radiocarbon ages of 10.7+0.1 and
11.4+0.1 "C ka BP (G2 moraines between ca. 12.7 and 13.4 Cal. ka BP, respectively)
(Clapperton and McEwan, 1985). Samples were collected on the upper and lower peat
layers within laminated fine-grained sediments underlying till. Peat layers were located
in a drained glacial lake basin up valley of G2 moraines. G1 by morphostratigraphy has
to be younger than G2. No ages are presented. In the Rucu Pichincha MIS 2 and MIS 1
glaciers advances are related to M4 (at ~ 3700 m), M5 (between 4100-4200 m) and M6
moraines (between 4200-4400 m; Figure 1-9). Peat from a palaeolake/bog enclosed by
M5 moraines gave minimum-limiting radiocarbon dates. M5 moraines ages are
11.240.1 "*C ka BP (ca. 13.0 Cal. ka BP) and 13.0£0.1 "“C ka BP (ca. 15.5 Cal. ka BP).
Heine (1995) proposed that the M4 moraines were deposited during the global LGM.
Bracketed age for M6 moraines is between 11.2+0.1 "*C ka BP (age of underlying peat,
ca. 13.0 Cal. ka BP) and 8.2-9.0 ka (age of overlying HL-4 tephra from Rosi, 1989).
Heine and Heine (1996) indicated not advance during the YD of glaciers at Rucu

Pichincha.

In Ecuador in the Cajas National Park, MIS 2 and MIS 1 glaciers advances are related to
a moraine complex located between 3700-3080 m (GZ, Figure I-9), based on
radiocarbon ages in lacustrine sediments (Hansen et al., 2003). Three moraines are
involved in this group, Z; (3760 m), Z, (3360 m) and Z3 (3080 m). Between Z; and Z,
is located Laguna Chorreras at 3700 m and up valley Z; is located Laguna Pallcacocha
at ~ 4060 m. Hansen et al. (2003) reported a radiocarbon age of 13.2+0.1 C ka BP
from the organic material collected at the base of a core from Laguna Chorreras.
Sedimentation beginning was estimated at ca. 17.0 Cal. ka BP. The oldest radiocarbon
age in the Pallcacocha lacustrine sediments core was 11.8+0.1 C ka BP, and the base

of the core was estimated to date at ca. 14.5 Cal. ka BP (Hansen et al., 2003). Therefore,
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Z, ages are between 14.5 Cal. ka BP — 17.0 Cal. ka BP and Z, and Z;3 older than 17.0
Cal. ka BP.

In the Papallacta valley, MIS 2 and MIS 1 glaciers advances are related to M4 or Sucus
moraines (~3850 m), M5 or Portrerillos moraines (~3900 m) and M6 (~4055 m) (Figure
[-9). Heine (1995) and Heine and Heine (1996) interpreted the M4 moraines as the
landform associated with the maximum extent of MIS 2 glaciation (i.e., LGM
moraines). M5 moraines were interpreted as older than ca. 12.3+1.3 "*C ka BP but
younger than the LGM, meanwhile M6 moraines were related to LG advances
(bracketed by radiocarbon ages of ca. 10.5+£0.8 C ka BP below and ca. 7.9+0.9 ''C ka
BP above). Clapperton et al. (1997) disagreed with Heine interpretation of M4, and
established Sucus or M4 advance and Potrerillos or M6 advance. Clapperton et al.
(1997) reported seven minimum-limiting radiocarbon ages on plant material and peaty
organic matter in sediments. This material was located overlying till between two Sucus
lateral moraines. Based on the radiocarbon dating, the Sucus advance occurred before
ca. 13.1 "*C ka BP (average age (n=7) ca. 15.6 Cal. ka BP). The Potrerillos moraines are
bracketed between 10.9 '“C ka BP (average age (n=11) ca. 12.8 Cal. ka BP), and 10.035
C ka BP (average age (n=5) ca. 11.3 Cal. ka BP). Clapperton et al. (1997) interpreted

the Potrerillos advance as contemporaneous with the YD climate reversal.

Considering the Andean glaciations overview herein presented, the following remarks
can be raised. Previous MIS 5 glaciations are poorly constrained and there is no
evidence of MIS 4 glaciers advances. Better constrained are MIS 2 and MIS 1
glaciations, maybe related to the better preservation of the glacial landforms. Tropical
Andean glaciers seem to have reached its maximum extensions before the global LGM.
Finally, the Younger Dryas (YD) advance seems not to be extensively evidenced in this

arca.
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SECTION II. A BACKGROUND GLACIATIONS
RECONSTRUCTION METHODS

This Section II presents methods for the study of glaciations. The main objective is to
show limitations of the different methods and their impact in the glaciations

interpretations.

11-1.0 Methods for glaciations reconstruction studies

II-1.1 Paleoglaciology

Paleoglaciology allows reconstructing former glaciers and ice sheets. These
reconstructions are related to paleo temperatures and paleo precipitations, so
paleoclimate conditions can be studied. Paleoglaciology is based on the glacial
inversion method (Figure 1I-1). This method is the conceptual process used to determine
glaciers and ice sheet evolution through time using the landforms originated from
glaciers or ice sheets activity (Bennet and Glasser, 2009). Once we understand how
landforms are modeled by current glaciers, then, we can use their spatial and temporal
distributions to reconstruct the vertical and horizontal former glacier extent (Bennet and
Glasser, 2009). Using geochronological methods applied on former glaciers landforms,
a timing of glacier evolution, advance and retreat, can be reconstructed. The direct
relation to climatic variations is obtained using paleo ELA reconstructions and

evaluating different proxy records.

II-1.1.1 Moraines, an important glacial feature in paleoglaciology studies
A moraine is a geomorphic marker constituted by till (non-stratified and unsorted semi-

angular clasts directly deposited by glaciers). It is originated from glacial erosion of the
bedrock. Moraines are developed in almost all glacial environments; the most
commonly are end moraines and other ice-marginal moraines (Schomacker, 2011). Ice-
marginal moraines are formed at the glaciers margins (involving lateral and frontal
moraines). Ground moraines or till plains are formed in subglacial environments, and
hummocky moraines are formed in dead-ice environments (Schomacker, 2011). End
moraines or terminal moraines indicate the former glaciers maximum extent. It is an
important glacial feature studied in this dissertation (Figure II-2). In alpine landscapes,
lateral moraines additionally aid in deciphering past ice thickness (Figure 1I-2), whereas

frontal moraines denote glaciers advances (Figure II-2). The distribution of ground
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moraine or till plains indicate deposition by warm-based glaciers and are thus an

important key to understanding past glacier dynamics (Schomacker, 2011).

Paleoglaciology

Glacial landforms

Generates:

- Former glaciers reconstruction
(surface and thickness extension).

- Former patterns of ice discharge
- Palaeo- ice streams

- Former basal thermal regime

- History of growth and decay

Figure II-1. Glacial inversion method. It is a method used for paleoglaciology studies.
From analysis and mapping of glacial landforms, former glacier surfaces and
thicknesses are reconstructed. Geochronology allows knowing glaciation timing.

Paleoclimate conditions are inferred from ELA values analysis.
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Figure II-2. Lateral, frontal and latero-terminal moraines. Ice-marginal moraines used
to delimit former glacier extensions. Latero-terminal or only terminal moraines denote

the maximum former glacier extension (Modified from Barr and Lovell, 2014).

Moraines could be formed by accumulation of supra-, en-, and subglacial debris,
abandoned at the glacier margins (Eyles, 1983; Benn, 1992). In front of the glacier
tongue proglacial debris are pushed (bulldozed) during the glacier advance. Subglacial
sediments are squeezed beneath glacier margins. Finally, bedrock and unconsolidated
sediments are thrust into imbricated ridges during the glacier advance (Barr and Lovell,
2014). Individual moraines are often produced through a combination of these
processes. The internal structure and composition of marginal moraines are largely
determined by their mode of formation and is therefore highly variable on different

sites.

In the ice-marginal moraines, debris must accumulate at glacier margins. These debris
are typically transported englacially or supraglacially. Factors as glacier velocity, the
volume of debris within/upon a glacier, and the duration of ice margin stability (i.e.,
still-stand duration) control the volume of material available for moraines formation

(Andrews, 1972; Kirkbride and Winkler, 2012).

Chronological information about glacier advances can be deduced from

morphostratigraphic analyses of the moraines distribution in the landscape. This
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geomorphic approach considers that spatial relations of different landforms allow
deducing the relative moraines ages (Hughes et al., 2005). In a glacier valley, terminal
moraines in the lowest part of the valley were deposited before the upper moraines,
since the destructive character of bulldozer effect of advancing ice tongues. When a
moraine overlay another one, the unaltered moraine is considered as the youngest. This
approach allows establishing that along the same lateral moraine ridge extension it is

isochrone.

During glaciations reconstructions, it is important to know that moraines are a partial
record of the glaciation history. Moraines indicate glacier advances. However, all
glacier advances occurred in a valley could be poorly represented by the moraines
distribution in the landscape. Different processes contribute to remove material from
pre-existent moraines: a) a more extended and younger glacier advance, b) proglacial
erosion, c¢) denudation and, d) gravitational processes (landslides). The combination of
these processes removes previous moraine materials and erases part of the glaciation
records (Kirkbride and Brazier, 1998). Because of this fact, an integration with
proglacial sediments studies, as for example from a proglacial lake or terraces,

complements glaciations reconstructions studies.

II-1.1.1.1 Moraines to reconstruct paleoclimate and limitations
Moraines indicate glacier advances and involve a glacier period in equilibrium with

climate (i. e. when mass balance is equal 0) and then, a period with positives mass
balances. Benn and Evans, (2010); Lukas et al, (2012) proposed that the moraine size
can be related to: a) glacier equilibrium duration with climate, b) glacier front speed
(which controls the deposition rate) and c¢) capacity of the glacier to erode rock material

(glacier size vs lithology).

Paleoclimate reconstructions are commonly based on former glaciers using lateral and
frontal moraines analyses. This approach relies on the assumption that the distribution
of moraines in the modern landscape is an accurate reflection of former ice margin
positions during climatically controlled periods of glacier margin stability (Barr and
Lovell, 2014). However, the validity of this assumption is debated because a number of
additional, no climatic factors are known to influence the moraine distribution. For

example topography, could be an important factor (Barr and Lovell, 2014).
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I1.1.1.1.2 Topographic control on the moraines distribution in the
landscape
Topography controls the location and timing of moraines formation, glacier extension

and dynamics, as well as the margin stability (Barr and Lovell, 2014). Glaciers are
developed in the topography above the regional climatic-ELA (i.e., in the accumulation
zone upon which snow and ice can accumulate and persist interannually) (Kessler et al.,
2006; Kaplan et al., 2009). Mountains topography can vary significantly, from flat
plateaus to high relief peaks which directly regulate the size and shape of glaciers
(Manley, 1955; Ives et al., 1975; Sugden and John, 1976; Golledge, 2007). Mountains
topography thereby determines morphology and the moraines distribution. For example,
plateaus located above the ELA provide large areas for snow and ice accumulation,
whereas the steepest slopes have little capacity to produce snow accumulation. Thus,
flat topography allows more extensive glaciers and moraines development, whereas non
plateau topography will restrict glaciation to smaller and not abundant ice masses and
moraines (Sugden and John, 1976) (Figure II-3). Despite same climatic conditions

prevail in both cases.

Moreover steep slopes in the accumulation areas will influence the debris provision for
moraine formation. Steep slope walls are more instable and debris collapses are higher,
so available material is higher for the moraine formation (Figure II-3) (Kessler et al.,

2006; Kaplan et al., 2009).

1I-1.2 Geochronological methods used to study Quaternary glaciations
Quaternary glaciations studies are based on geomorphological glacial analysis and

dating. Also are based on pro-glacial sediments sequence (lacustrine or continental)
descriptions and timing. Glacial landforms commonly dated are moraines, polished

surfaces and roches moutonnées (erosional glacier landforms).
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Fig. II-3. Illustration of how, under uniform climatic conditions (reflected by a uniform
ELA), (A) mountain height and (B) plateau and nonplateau topography can lead to
variations in glacier dimensions and thereby control moraine location. Blue zones

represent glacier accumulation areas (Ac) (From Barr and Lovell, 2014).

Various dating techniques are commonly used (lichenometry, dendrochronology,
radiocarbon dating and Terrestrial Cosmogenic Nuclide (TCN) dating) (Figure I1-4).
The selection of geochronological techniques depends of the available material to date

and the time window of interest.

Lichenometry is a surface-exposure dating method that uses lichen-growth rates to infer
the age of recent glacial landforms (Briner, 2011). The method is particularly useful in
regions above and beyond the tree-line and especially in Arctic-Alpine environments
because erosion of glacial landforms is low (Armstrong, 2004). However, in high elevation
areas of the tropical Andes, this method has been successfully used (e.g. Rabatel et al.,
2005; Jomelli et al., 2009). This is because the external conditions are equivalent to those
of artic areas (low erosion). This method is restricted to date only Neoglacial deposits
(within the last 500 years) and require knowing the lichen ecology (i.e. thallus growth rate)
in the studied area (Armstrong, 2004). Dendrochronology technique dates current or sub

fossils logs. Moraines can be dated until 11 ka (Briner, 2011). Dendrochronology was
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mainly used in boreal and temperate regions because the annual growth of the trees
rings is completely understood. However, during the last decade this technique has been
also used in the tropical regions (e.g. Wils, et al.,, 2010). Lichenometry and

dendrochronology are dating techniques suitable for Holocene glacier dynamics.

Tree-ring
cross dating
and

" radiocarbon
Lichenometry dating

sure

&) = ating

SRS

Figure 1I-4. Common methods used to date glacial landforms. Targets for radiocarbon
and dendrochronology dating are labeled: LT living tree, L log, SS sheared stump,
ROM reworked organic material, D/O OM deformed/overridden organic material.
Targets for cosmogenic exposure dating (boulders preferably located on the moraine

crest) (Modified from Briner, 2011).

Radiocarbon dating involves '*C determination in dead organisms. Assuming that the
organism death and landform deposition was contemporaneous, age of the deposit could
be estimated (Libby, 1955; Taylor and Lloyd, 1992). Deposit ages can be estimated for
the last 45.00 kyr (Siame et al., 2000). Studies have applied radiocarbon dating to
sediments below, within, and above moraines to provide maximum (below and within)
and minimum (above) age constraints (Brinier, 2011). The radiocarbon dating provides
only bracketing ages (i.e. an age interval) of the glaciers advances (Balco, 2011). In
high elevation area, organic remains are scarce leading to low preservation of available

materials to be dated (Balco, 2011).
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Radiocarbon dating is used to date sedimentary material as lake sediments or peatbog
samples, directly related to glacial landforms (i.e. proglacial lake sediments developed
upstream moraines ridges which provide minimum-limiting ages for down valley
moraines) (Robdell et al., 2009). Furthermore, organic matter in outwash material (sand
and gravel) down valley from moraines allow the calculation of maximum-limiting ages
(e.g., Gonzalez et al., 1965; Mercer and Palacios, 1977; Helmens, 1988). This requires
the assumption of evident relationship between dated outwash materials and the nearby
moraine ridge. When this assumption is not clear, radiocarbon ages from organic matter

in these stratigraphic settings are ambiguous (Robdell et al., 2009).

Terrestrial Cosmogenic Nuclide (TCN) dating (the methodological aspect will be
discuss in detail in Chapter IV- Methods and Materials) is based on the quantification of
isotopes produced by the interaction of cosmic rays with Earth chemical targets (Gosse
and Phillips, 2001; Dunai, 2010). Geological surfaces exposure time to the cosmic rays
are determined using the TCN dating. Glacial landforms exposure times can be
interpreted as a chronological markers for the former glacier activity reconstruction. It is
easily related to the deglaciation age of a glacial landform and overcomes the absence of

organic material trapped necessary for radiocarbon dating.

This thesis is based on TCN dating because this method coupled to geomorphological
investigations provides more accurate ages for glaciations reconstructions. Specifically
""Be in-situ nuclide dating was used because of the regional lithology (granites and
gneisses). These rocks have high quartz content; '"Be is the most suitable nuclide (see
more in Chapter IV- Methods and Materials). Uncertainties in the '°Be in-sifu nuclide
dating are lower than 15% (Dunai, 2010). Contrary to radiocarbon dating, the TCN
dating allows dating exposure ages of glacial landforms from the Late, Middle and

Early Pleistocene (e.g. Smith et al., 2005b; Heyman, 2014).
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SECTION III. GENERAL GEOLOGICAL, CLIMATE AND
PALEOCLIMATE SETTINGS. VENEZUELAN GLACIATION

II1-1.0 General geological settings

The Mérida Andes (MA), also known as the Venezuelan Andes, is a ~400 km long
SW-NE belt, located in the Southwest of Venezuela. The highest peak is the Pico
Bolivar (4978 m a.s.l.). The MA has a crystalline core of Precambrian gneiss, schist and
Paleozoic to Mesozoic plutonic rocks (Hackley et al., 2006). These metamorphic and
igneous rocks are overlain by Jurassic and Cretaceous clastics and calcareous rocks, and
flanked by Eocene to Pliocene molasse rocks and Quaternary sediments (Hackley et al.,

2006) (Figure III-1).

The orogenesis is strongly connected to the geodynamic interaction of the Panama Arc,
Caribbean and South American plates and other minor continental blocks (Taboada et
al., 2000; Audemard and Audemard, 2002; Bermudez, 2009; Monod et al., 2010).
Interactions of these plates leads to the oblique convergence between the Maracaibo
Triangular Block (MTB) and South America Plate, and is responsible for the present
MA build-up (Kellogg and Bonini, 1982; Colletta et al., 1997; Audemard and
Audemard, 2002; Audemard, 2003; Bermudez, 2009; Monod et al., 2010) (Figure I11-2).

MA uplift is evidenced by: 1) the axial valleys display well-preserved Quaternary
staircase terrace systems with more than 500 m of vertical drop between the oldest
terrace and present river beds (Audemard, 2003). 2) Rivers cutting across the structural
grain of the chain show very distinct transverse “wine cup” profiles (Audemard, 2003).
3) Synorogenic mollasic deposits along both flanks of the chain, deposited in flexural
basins, whose thicknesses reach 8 and 3 km on the northwest and southeast of the MA,
respectively (Audemard, 2003). Uplift of the MA may be attributed solely to tectonics
or, more specifically, thrust faulting and folding along the margins of the range (e.g.,
Audemard and Audemard, 2002). Uplift rates in the MA have been estimated based on:
1) the depths of formation of the igneous and metamorphic rocks in the highest summits
of the chain with an average uplift rate during the last 3-5 Ma of 2-5 mm/a (Audemard
2003). 2) Boulders in a faulted alluvial fan along the Northwestern foothills where uplift
rate during the late Pleistocene ranged between 0.7-1.7 mm/a (Wesnousky et al., 2012).
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3) Incision rate of the Santo Domingo river in fluvial terraces from the Southeastern

flank with an uplift during the last 70 ka of 1.1 mm/a (Guzman et al., 2013).

Figure IlIl-1. Mérida Andes location (study area indicated by the black rectangle). A)
Digital  Elevation Model (DEM) from South America (Modified from:
photojournal.jpl.nasa.gov/catalog/PIA03389) B) DEM from Mérida Andes with the
main faults in Venezuela (Modified from Carrillo et al., 2008). C) Modified Geological
map from the study area from Hackley et al. (2006)(Modified from Carrillo, 2006)
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Figure IlI-2. Geodynamic settings in the North of South America where is the MA
located. (Modified from Audemard and Audemard, 2002). (BB) Bonaire Block; (BF)
Bocono Fault; (BUF) Burbusay Fault;(CB) Choco Block; (EC) Esatern Cordillera of
Colombia; (LAS) Lesser Antilles Subduction;, (MTB) Maracaibo Triangular Block;
(OAF) Oca-Ancon Fault; (PA) Panama Arc;, (POF) Piedemonte Oriental Fault; (PR)
Perija Range; (SAFF) South Andean Frontal Flexure; (SCDS) Southern Caribbean
Deformation Belt; (SM) Santander Massif; (SMB) Santa Marta Block; (SMBF) Santa
Marta-Bucaramanga Fault; (UCF) Uribante-Caparo Fault; (VF) Valera Fault.

Tectonic evolution models of the MA could be divided in symmetric and asymmetric
(e.g. Kellogg and Bonini, 1982; Colletta et al., 1997; Audemard and Audemard, 2002,
Monod et al., 2010). In the first group, the MA is conceived as a symmetric chain with a
major axial strike slip fault in the center (Bocond fault), and with bounding reverse
faults on both sides of the mountain. The MA is interpreted as a positive flower
structure and originates along Bocond fault by pure transpression (e.g. Rod et al., 1958;

Shagam, 1972; Stéphan, 1982).
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The asymmetric models are revealed by the gravimetric survey of Hospers and Van
Wijnen (1959). This asymmetry is explained by two types of subduction models. The
first type proposes a doubly-vergent orogen, which is produced by the incipient
continental subduction of the MTB toward the Southeast (e.g. Kellogg and Bonini,
1982; De Toni and Kellogg, 1993; Colletta et al., 1997) (Figure III-3A). The other type
applies an “orogenic float” model to the whole of the Caribbean-South American plates
boundary zone. In this case, a major mid-crustal detachment underlying the MA,
Maracaibo basin, Perija and Santa Marta ranges is proposed, with either north-west- or
south-east-directed subduction of the underlying lower crust, and varying importance of
strike-slip faults (e.g. Audemard, 1991; Jacome et al., 1995; Yoris and Ostos, 1997;
Audemard and Audemard, 2002; Cediel et al., 2003; Monod et al., 2010) (Figure III-
3B).

A
) NW SE
Bocond Fault
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Figure II1-3. Crustal models of MA. A) Modified Intracontinental collision model from
Colletta et al. (1997). B) Modified crustal model from Audemard and Audemard (2002).
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In the MA have been identified at least seven tectonic blocks with contrasting
exhumation and cooling histories (Bermudez et al., 2010). The Sierra Nevada, Sierra La
Culata and El Carmen blocks, located in the central part of the MA, cooled rapidly but
with diachronism during the late Miocene-Pliocene. Major surface uplift and
exhumation occurred in the Sierra Nevada block since before 8 Ma. A second phase of
uplift and exhumation affected the El Carmen and Sierra La Culata blocks during the
late Miocene-Pliocene. The highest topography and steepest relief of the belt coincides
with these blocks (Bermudez et al., 2010). 70 peaks higher than 4300 m a.s.l have been
identified in the central part of the MA, 54 peaks in the Sierra del Norte, 14 in the Sierra
Nevada de Mérida and 2 in the Sierra de Santo Domingo (Silva, 2001).

Present-day deformation in the Mérida Andes is mainly accommodated by the Boconé
Fault. It is a NE-SW trending right-lateral strike—slip (RLSS) fault that extends for
about 500 km (Audemard and Audemard, 2002). It extends between the T4chira
depression, at the border between Colombia and Venezuela, and the town of Morén
located on the Caribbean coast (Audemard and Audemard, 2002). In Morén, the
Boconé fault exhibits a 45° clockwise bend, thus prolonging into the east—west striking

San Sebastidn—FEl Pilar fault system (Audemard and Audemard, 2002) (Figure III-2).

Right-lateral offsets of Quaternary features by the Boconé Fault (BF) such as moraines,
drainages, alluvial deposits and shutter ridges, range from 60 to 1000 m depending on
their age (Audemard and Audemard, 2002). During Quaternary, slip rates values for the
BF are between 3 and 14 mm/a (Audemard, 2003). In the central MA, at the
Apartaderos Pull-apart basin, the BF slip rates for the south and north strands range,
between 5-9 mm/a based on the Mucubaji valley, Los Zerpa and La Victoria moraines
studies (Schubert, 1980a; Soulas, 1985; Soulas et al., 1986; Audemard et al., 1999;
2008; Wesnousky et al., 2012) and between 2.3-3.0 mm/a based on El Desecho moraine
study (Audemard et al., 1999), respectively. In this region, the Boconé Fault cuts
Precambrian basement and Late Quaternary glacial sediments of the two last major
glaciations. Deposits of the last Pleistocene glaciation, known here as the Mérida
Glaciation (MIS1, MIS 2; Schubert, 1974; Schubert and Vivas, 1993) are particularly

abundant along the central section of the Bocon6 Fault.
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I11-2.0 Glaciations reconstructions in the central Mérida Andes

Glaciers studies in the Mérida Andes started late XIX™ century (e.g. Sievers, 1885).
Jahn (1925 and 1931) made the first planimetric measurements of the existent glaciers.
A large and detailed bibliographic compilation about glaciological observations in
Venezuela was made by Schubert (e.g. 1972; 1974; 1975; 1980; 1992 and 1998).
Typical features of high mountains affected by glaciations have been observed in the
MA above ~2500 m (Figure I1I-4). These features are mainly composed of depositional
glacial materials as till and moraines. Landscape is dominated by erosional glacial
landforms at elevations higher than 3500 m (e.g. cirques, glacial step, glacier valley,
horn, roche moutonnée; Schubert and Vivas, 1993). In this section are presented some
geomorphological descriptions extracted from previous studies. Specific glacial

morphologies in each studied valley are presented in Results section V.

Royo and Goémez (1959), Schubert (1970, 1972, 1974) and Schubert and Valastro
(1974) described glacial morphologies in Pdramo de La Culata, Paramo de Piedras
Blancas and Sierra de Santo Domingo (Figure III-6 numbers 1, 2, 5 and 6). These
authors determined that the landscape in the central MA is mainly characterized by two
moraine complexes between 2600-2800 m and 2900-3500 m. Best preserved moraines
complexes are located in the region between Mucuchies town (MU) (by the Chama
river) and Santo Domingo town (DO) (by the Santo Domingo river) (Figure I1I-6). This
preservation has been attributed to the flatter topography in this region compare to the

others and small periglacial erosion during the Holocene (Schubert, 1984).

The upper moraine level (between 2900-3500 m) is characterized by fresh and
preserved till, in the form of high ridges with an internal fabric which reflects the down
valley glacier movement (Schubert, 1974). The lowest moraine complex covered by
abundant vegetation (between 2600-2800 m) is characterized by extremely weathered

till, deeply eroded, which still shows striated and faceted pebbles (Schubert, 1974).

79



K 1 L] ("
,jAE
\\ﬂ\ )\gé{jh T \N GLACIAL GEOMORPHOLOGICAL MAP

T0%4' T —
- 57 OF LA CANOA BASIN. PUEBLO LLANO
U e o LF SCALE
o ' 7 f 1 oy oo ) ]
: l 3 ) T SEN.E.
N 2 /
o . f‘ LEGEND
sz i ‘. . & N4 I .\ \ et GLACIAL CHANNEL
¢ ] ; A
o g ) PP \ :3 CIRQUE
| \
O i [ 1
2 _ C ROCK STEP
i } ~ . "\3-‘{
Sy =TT MORAINES
o »
NN DEBRIS SLOPE CONES
f
[T ROCHE MOUNTONE
A
AN OUT WASH FAN
— — —  FAULT
Gns PRECAMBRIAN GNEISS SERRA NEVADA GROUP
L) RF. STRATIGRAPHIC SECTION

RELATIVE SITuATION VENEZUELA

TOA0 |

—=N

- . AFTER BEZADA 1980 BRASH,

Figure 1lI-4. Example of geomorphological features in the central MA.
Geomorpgological map for La Canoa at Pueblo Llano (From Bezada, 1990).

Glaciations in the central MA have been mainly established based on the
geomorphological and limited chronological data. Morphostratigraphy and till
sediments descriptions in Paramo de la Culata (in Sierra del Norte), Sierra de Santo
Domingo, Sierra Nevada and La Canoa in Pueblo Llano valley were used. Schubert
(1974) recognized two moraines complexes. Author proposes the name of Mérida
Glaciation. Mérida Glaciation was divided in the Early (moraines between 2600-2800
m) and Late Mérida Glaciation (moraines between 2900-3500 m) (Schubert, 1970,
1974).

MIS 1 and MIS 2 glaciers advances are related to Late Mérida Glaciation (Late
Wisconsin) which is better constrained and range between 25-13 ky (based on
radiocarbon dating; Schubert 1974; Schubert and Valastro, 1974; Schubert and
Clapperton, 1990).
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Figure 111-6. Location of glaciations and paleoclimate studies developed in the central Mérida
Andes. 1: Pdramo de La Culata/ La Culata moraine, 2: Pdramo de Piedras Blancas, 3: Laguna
Verde Alta/Pdramo de Piedras Blancas, 4: La Canoa moraine / RF3 section, 5: Los Zerpa
moraine, 6: La Victoria moraine, 7: Mucubaji valley, 8: El Caballo moraine, 9: Mucuchache
valley, 10: PEDS section, 11:LAG 4 and LAG 5 sections, 12: Laguna Los Anteojos, Humboldt
Massif, 13: Lago Verde, Humboldt Massif (DEM from FAQ, 2004).

A Younger Dryas (YD) glacier advance was recorded close to Lago Verde in the
Humboldt Massif at 10.52+2.00 '“C BP (12.40 ka cal BP, Figure III-6 number 13),
based on analyses of peat in moraine and outwash deposits at 4000 m (Mahaney et al.,
2008). In the Mucubaji valley (Figure III-6 number 7), peat samples covered by
glaciofluvial materials (till and outwash) were collected 150 m up-valley from a small
push moraine (sitt MUM7B, 3800 m; Mahaney et al., 2008). Peat samples were dated
at 13.29 + 0.22, 13.64 = 0.15 and 13.66 + 0.44 cal ka BP. These deposits have been
connected to the moraine which has been associated to the YD glacier advance

(Mahaney et al., 2008).
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MIS 2 glaciers advances are evidenced during a local last glacial maximum (LLGM)
established in Los Zerpa (~3100 m) and La Victoria (~3250 m) terminal moraines in
Sierra Nevada (Figure III-6 numbers 5, 6; Wesnousky et al., 2012). Terminal moraines
were dated at 16.7+1.4 ka and 15.2+0.9 ka respectively. These ages are based on
weighted averages exposure ages using '’Be nuclide dating. MIS 2 glacier advances are
evidenced in Sierra del Norte in La Culata moraine (Figure III-6 number 1) at 14.1£1.0
ka and 15.240.9 ka (3400-3500 m), based on average exposure age using "Be nuclide
dating (Wesnousky et al., 2012).

Lowest moraines level between 2600-2800 m was stablished as glaciers advances
during the Early Mérida Glaciation, during MIS 4 and MIS 5 (Schubert, 1974). This
stage is poorly constrained. Only few chronological data are available and ages range
between ~60 and ~90 ka (Mahaney et al., 2000; Mahaney et al., 2001; Dirszowsky et
al., 2005; Mahaney et al., 2010a). Kalm and Mahaney (2011) indicate evidences of
Early Mérida Glaciation at PEDS section in Mesa del Caballo at ~3500 m (Figure III-6
number 10), As well in the RF3 section in La Canoa valley at Pueblo Llano at ~2800 m
(Figure III-6 number 4). Finally, evidences have been reported in Los Zerpa terminal
moraine at Los Frailes. However, chronological data is not presented for Los Zerpa and
Wesnousky et al. (2012) based on "Be nuclide dating determine this moraine age at
16.7£1.4 ka. The chronostratigraphy of the mid to upper PEDS5 section placed a
minimum age on the glaciolacustrine sequence at ~60 ka (Mahaney et al., 2010a). In the
RF3 section of La Canoa moraine (Pueblo Llano, Figure 1II-6 number 4) is recorded the
oldest evidence of the Early Mérida Glaciation, based on the lowest glaciotectonized
diamict dated at 81 ka using optically-stimulated luminescence (OSL; Mahaney et al.,

2000).

Possible evidences of the previous MIS 5 glaciers advances have been indicated in the
Chama, Mucujin ( 2600 m), Aracay and Santo Domingo river valleys (Figure I1I-6), in
the form of isolated outcrops of a diamicton (Schubert, 1984). Also in Mesa del
Caballo, Mahaney et al. (2010b) studied LAG 4 and LAG 5 sections close to El Caballo
moraine at ~3500 m (Figure III-6 numbers 8 and 11). Authors found evidences of two
glaciers advances, based on differences in the weathered state of light and heavy

minerals between till layers in LAG 5 (equivalent to the entire LAG 4 section). A sharp
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relation was identified between these two glaciers advances which indicate a hiatus of
unknown length in time. The weathered state of sands with clay mineral composition, in
the paleosols of LAG 4 and LAG 5 suggests an age further back in Pleistocene time.
Authors proposed the ice source was probably initially located at 2-4 km to the south of
Mesa del Caballo. This assumption is based on the Boconé fault movement. The ice

source was located at the south of the Mucuchache valley (Figure III-6 number 9).

II1-3.0 Paleoclimate settings

Quaternary climate studies in the MA are based on analysis of lacustrine, fluvial, glacial
deposits and paleosols (e.g. Schubert 1974; Schubert and Valastro, 1980; Salgado
Labouriau, 1984; Bradley et al., 1985; Salgado-Labouriau, 1989; Weingarten, 1990;
Yuretich, 1991; Salgado-Labouriau et al., 1992; Rull, 1995; Mahaney et al., 2000;
Dirszowsky, 2005; Rull et al., 2005; Stansell et al., 2005; Mahaney et al., 2007;
Carrillo, 2006; Carrillo et al., 2008; Rull et al., 2010; Stansell et al., 2010). Also
paleoclimate deductions have been obtained based on paleo ELA reconstruction

(Stansell et al., 2007).

Paleoclimate information before Early Mérida Glaciation is not extensively detailed.
Few evidences of glacial deposition prior to Mérida Glaciation (Wisconsinan,
Weichselian) have been observed. The “El Pedregal interstadial” has been described
between the Early and the Late Mérida Glaciation (Figure III-7) (Dirszowsky et al.,
2005; Rull, 2005). These studies were based on sedimentology and geochronology
analysis of 8 m of predominantly lacustrine material from the PEDS section. Warmer
and wetter climate conditions have also been described from analyses of alluvial
terraces: 1) 2™ alluvial terrace in the valley of Rio Motatdn at Tufiame with peaty layers
dated ("*C on wood) between 50.6 and 33.7 "*C ka BP) (Schubert and Valastro, 1980;
Schubert and Vivas, 1993). 2) The RF3 section in La Canoa valley at Pueblo Llano,
with dating of sandy silt between 31-26 ka (OSL ages) overlain by glacially deformed
sand which allow extending the interstadial conditions to the immediate onset of the

Late Mérida Stadial at ca. 25 ka (Schubert and Clapperton, 1990).

Last Glacial Maximum (LGM) was established based on palynological analysis
between 22.75 and 19.96 cal ka BP of PEDS section (Figure III-7) (Schubert and

Rinaldi, 1987). Temperatures were at least 8.8+2°C cooler than today in the MA
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(Stansell et al., 2007). This study was based on a paleo ELA variations considering

precipitation variation (AP) between -500 and 500 mm/yr.

El Caballo Stadial is a cold period dated at 16.5+0.3 ka BP which was identified from
pollen inventory in fluvioglacial sediments from Mesa del Caballo section (PED5

section). Temperatures were probably around 7°C lower than today (Rull, 1998; Figure

11-7).
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Figure IlIl-7. Paleoclimate phases determined in the MA (Based on Salgado-Laboriau
and Schubert, 1976, Salgado-Laboriau et al., 1977, Schubert and Rinaldi, 1987,
Salgado-Laboriau, et al., 1988, Rull, 1998, Dirszowsky et al., 2005)(Modified graphic
from Carcaillet et al., 2013).

Based on paleoecological analysis of the Late Quaternary terrace from Mucubaji valley
(Figure III-7), Salgado-Labouriau and Schubert (1977) defined the Mucubaji Cold
phase at 12.65 ka BP. This phase had an average temperature 2.9°C lower than current
temperatures. Rull et al. (2005, 2010) relate the Younger Dryas (YD) glacier readvance
to the cold period of the Mucubaji phase. Abruptly colder and drier climate conditions
in Sierra Nevada occurred between 12.85 ka and 11.75 ka (Stansell et al., 2010). This
assumption is based on geochemical and clastic sediment analyses from Laguna Los
Anteojos at 3900 m. These authors established that the maximum glacier extension
occurred at 12.65 ka. ELA values were ~360 to 480 m lower than today and
temperature declined between 2.2-2.9 °C colder than today. Rull et al, (2010) using a
high palynological analysis from Laguna Los Anteojos, also determined cold climate
conditions between 12.86 ka and 11.65 ka. Temperatures were 2.5-3.8 °C colder than
today. Carrillo et al. (2008) determined cold climate conditions during the YD (~11.6
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ka- ~12.8 ka BP) based on magnetic susceptibility in core sediment from Mucubaji

Lake. Abrupt warming at the onset of the Holocene (~11.6 ka BP) was also recognized.

Finally, pollen records have shown that vegetation and climate was similar than today
during most of the Holocene (Salgado-Labouriau et al., 1988, 1992; Rull, 1999). Some
short cold events occurred at 6.0-5.3 '*C ka BP (La Culata cold/dry phase; Salgado-
Labouriau and Schubert, 1976), also between the eleventh to seventh centuries (Rull et
al., 1987). The coldest period was recognized between the 13th to 17th centuries;
Piedras Blancas phase IV (Rull et al., 1987). Whereas relatively warm conditions
occurred between 9.4-6.3 and 3.6-2.5 ka BP (Miranda warm phases; Salgado-
Labouriau et al., 1988; Schubert and Vivas, 1993).

I11-4.0 Present-day climate in the Venezuelan Andes

The climate of the northern tropics is mainly controlled by the Intertropical
Convergence Zone (ITCZ), which is highly dependent on the seasonal cycle of solar
declination (Benn et al., 2005). Average temperature in the Mérida Andes varies little
seasonally, but diurnal temperature fluctuations may be as much as 20°C (Schubert and
Clapperton, 1990). These temperature variations are determined by insolation, solar

radiation and cloudiness factors (Monasterios and Reyes, 1980).

Moisture is predominantly derived from evaporation over the tropical Atlantic and
evapotranspiration from the Orinoco River Basin, which is advected toward the Andes
by easterly trade winds (Pulwarty et al., 1998). Modern climate data from the MA also
demonstrate the pervasive influence of equatorial Pacific SSTs (Polissar et al., 2013).
Precipitation is highly seasonal, with a maximum during the boreal summer and
minimum during winter (Pulwarty et al., 1998). However, more recently, Poveda et al.
(2006) established maximum precipitations during fall and spring seasons (North
Hemisphere). Patterns are also affected by orographic controls and local mountain

circulation systems (Pulwarty et al., 1998; Poveda et al., 2006).

Climate in the MA is also locally influenced by the Maracaibo, Los Llanos and Lara-
Falcon basins (Figure III-8) (Monasterios and Reyes, 1980). The NE areas are

influenced by the Lara-Falcon basin, which is characterized by a bimodal rainfall
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pattern with the lowest precipitations (e.g. Cende 653 mm). Los Llanos basin mainly

influences the southern MA hillsides, where rainfall pattern is unimodal and high (e.g.

Mesitas 840 mm).

Northernmost of the MA is characterized by a bimodal rainfall

pattern originated from the Maracaibo Lake basin and with values higher than 1000 mm

(e.g. La Culata; Figure III-8; Monasterio and Reyes, 1980).
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Figure IlII-8. Schematic rainfall patterns distributions in the MA. Valleys close to the

Maracaibo lake basin have bimodal rainfall pattern whereas valleys toward Los Llanos

basin have unimodal patterns. Valleys close to the Lara-Falcon basin have bimodal

pattern and the lowest rainfall values (Modified from Monasterios and Reyes, 1980).
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SECTION IV. METHODOLOGY

In order to study the deglaciation histories to reconstruct glaciations and establish
paleoclimate deductions, paleoglaciological researches imply the use of glacial
geomorphology and geochronology studies. The paleoclimate deductions made in this
dissertation are based on the paleoglaciological approach of paleo ELA and
paleoclimate proxy records correlations. The geomorphological analysis was initially
used to select which glacial landforms study. The Terrestrial Cosmogenics Nuclides
(TCN) using the '°Be cosmonuclide dating was used as a geochronology method to
determine deglaciation ages of the glacial landforms. The geomorphological analysis

was also used to determine paleo ELA values.

Section IV begins with fundamental aspects of the geochronology based on TCN 'Be
cosmonuclide dating (IV-1). Then, reasons on the selection of the study area and
samples locations selected are exposed in an overall perspective (IV-2) (more details
about why each valley or moraines were selected are present in section Results V).
Methodology used for samples preparation, analysis and exposure ages calculations are
present in IV-3, IV-4 and IV-5. Former glaciers surface and thicknesses reconstructions
methodology are presented in section I'V-6. Finally, paleo ELA reconstruction methods

are presented in section I'V-7.

1V-1.0 Geochronology method based on Terrestrial Cosmogenics Nuclides (TCN)-
"Be nuclide dating

Lithology in the area is mainly felsic composition, rich in quartz. Thus, the TCN- '°Be
cosmonuclide dating was used to study deglaciation ages of the glacial landforms. To
better understand the geochronological method some fundamentals aspects are

presented.

1V-1.1 Interaction between cosmic rays and matter
Cosmic rays are high-energy, charged particles that enter the Earth environment

(atmosphere, hydrosphere and lithosphere). The majority of cosmic-ray particles are
protons (~83%), but they also include o-particles (~13%), electrons (~3%), and heavy
nuclei (~1%) (Dunai, 2010).
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Cosmic rays produce nuclear reactions with atmospheric targets and produce secondary
particles (Figure IV-1). Because some charged particles interact with the matter in the
atmosphere, cosmic rays composition changes from the top of the atmosphere to the
Earth’s surface. At the top of the Earth’s atmosphere the cosmic rays are largely
composed of protons (87%), a-particles (12%) and heavier nuclei (~1%) (Dunai, 2010).
At the sea level, the cosmic rays composition is mainly neutrons (98%) (Dunai, 2010).
This new composition of the cosmic rays interacts with the lithosphere, specifically with
target atoms (e.g. Si, O, Mg, Fe, Al, CI, K) within minerals (e.g. quartz and olivine)
(Bierman, 1994; Gosse and Phillips, 2001). Cosmogenic nuclides (TCN) also called in
situ cosmogenic nuclides (e.g. 3 He, 21Ne, 22Ne, 3 6Cl, 26Al, 10Be) are produced (Bierman,

1994; Gosse and Phillips, 2001).

; Primary
| cosmic-ray
| particle

——

Electromagnetic Mesonic Nucleonic

Figure 1V-1 Cosmic rays and Earth matter interaction in the atmosphere. It is showed
the cascade reaction as result of particles interaction. Abbreviations used: n neutron, p
proton (capital letters for particles carrying the nuclear cascade), o alpha particle, e*

electron or positron, y gamma-ray photon, « pion,  muon (Dunai, 2010).
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IV-1.2 Terrestrial Cosmogenics Nuclides (TCN)-"’Be nuclide dating
Since the beginning of the eighties, TCN dating was a useful tool to quantify surface

geological processes. Nowadays technical improvements and developments allow to

measure low concentration (loBe/gBe = 10'16) with low analytical uncertainties (< 5%).

In this study the beryllium-10 (‘°Be) nuclide dating was used because production
principles of '°Be in Quartz are the more documented and the collected lithologies are
mainly granites and gneiss. This isotope has a lifetime of 1.36+/- 0.07 Ma and it is
obtained by spallation reactions mainly on silicon and oxygen atoms in the minerals
structures (Dunai, 2010). As cosmic rays energy strongly decreases with the depth of
penetrated material, depth production decrease by an exponential law (Gosse and
Phillips, 2001). By convention, the reference production rate is proposed for a Sea-
Level and High Latitude (SLHL) location. This SLHL production must be scaled to the

sample site in order to take in to account local parameters.

1V-1.3 SLHL TCN production rate scaling (local parameters controlling the
B¢ production rate)

1V-1.3.1 Magnetic field and latitudinal dependence
Because incoming cosmic rays is modulated by the Earth magnetic field (Carcaillet,
2003), the '°Be production rate, and consequently '°Be concentration, is controlled by
the intensity of the magnetic field. This latitudinal modulation being significant for low

latitude (<50°), it is particularly critical for TCN dating in tropical areas.

1V-1.3.2 Altitudinal dependence
The only fraction of the cosmic rays with enough energy allows the production of TCN.

Because this fraction decreases with the atmosphere depth, the TCN production varies

with elevation with maximum production in elevation and minimum at sea-level.

1V-1.3.3 Topographic dependence
Sampling in area surrounded by relief requires considering the proportion of cosmic

rays flux shielded by topography. This is reached by calculation of the part of the semi-
hemispherical sky shielded using clinometers at the sampling site (Figure IV-2) (Siame,

2000; Gosse and Phillips, 2001; Dunai, 2010).
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Figure 1V-2. '° Be production depending of the topography around the place of the
sample collection (Modified from Siame et al., 2000). a) Sample location receives more
cosmic rays from all directions. b) It is an intermediate case where cosmic rays do not

impact from all directions because of hillside which shield the boulder. c) It is the case

with the highest shielding factor.

1V-1.3.4 Depth production

In rocks, '°Be is mainly generated by neutrons and muons collisions. '’Be concentration
varies with the sampling depth (which follow an exponential law, Figure 1V-3), the

exposure duration and the surface erosion (Gosse y Phillips, 2001).
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Figure IV-3. The "Be production in quartz as a function of depth below surface at Sea

Level and High Latitude (SLHL; Modified from Dunai, 2010).

Considering erosion rate and cosmic radiation through the time, '°Be concentration in

rocks can be modeled as follow:
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Equation IV-1
C(x, & 1) is the 19Be concentration at a depth x (below the surface in cm) with an erosion
rate € (cm/yr) and an exposure time t. P, is the "Be production rate in atoms/grams/year
(at/g/a). Ciyy 1s the '"Be concentration in atoms/grams (at/g) inherited from previous
exposures (if is effective). Pn, Pus, Puf (in atoms g yr™') are the relative contributions
of neutrons, slow muons and fast muons (Pn=97.85%, Pus=0.65%, Puf=1.65%;
Braucher et al., 2003). SLHL reference production rate is done for surface. Because of
the exponential law production drop, sample thickness (cm) must be taken in account

for calculation.

1V-1.3.5 Temporal evolution of TCN concentration
During continuous exposure, ''Be concentration increases with time until it reaches a

steady state when production and losses due to erosion and radioactive decay are equal.
This state is reached earlier when the erosion rate of the surface is high (Figure 1V-4).
Accurate exposure time calculation is thus possible when the concentration has not

reached this steady state.

100,000,000 85
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Exposure time (vr).
Figure IV4. Theoretical '’Be concentrations evolutions with exposure time for different

erosion rates (Brown et al., 1991). A '°Be concentration could be interpreted as an age
(exposure time) or as an erosion rate (m/Myr). Based on the geological and

geomorphological context could be assumed if erosion is equal to or different from 0
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m/Myr. Considering ¢=0, a '°Be concentration of 550.000 at.g”represent 90 ka as
exposure age. Considering erosion significant >0 the maximum erosion is 10 m/Myr

(Modified from Le Roy, 2012).

When erosion is not high is thus possible determine accurate exposure ages. The
geological and geomorphological context allows inferring erosion hypotheses where

samples were collected. If erosion is assumed 0 cm/yr, '°Be is determined using:

— & = Abuin
T /1 (1 € )

Equation IV-2

The minimum age (%) is found using:

_tmin :%Ln(l

~A-C(0,2)

P ) :
Equation IV-3

1V-1.4 "°Be nuclide dating implications on glaciation reconstruction studies

Glacial erosion generates landforms that are exposed to cosmic rays after glaciers
retreat. '’Be geochronology is suitable to date exposure time of these abandoned glacial
landforms. This could be referred also as deglaciation ages which can be interpreted to
identify climate changes which control former glacier dynamics. Erosion could happen
after glacial landforms deglaciation and could remove some of the cosmogenic nuclides.
It is important to evaluate this process. Observation of evidences of glacier activity (i.e.
striation, polished surfaces) and/or consideration of published data of rock erosion,
allow to precise the computed age. Because the sampled surface can undergo
unquantifiable erosion, exposure ages are assumed as minimum estimates (Nishiizumi
et al., 1989; Briner and Swanson, 1998; Siame et al., 2000; Gosse and Phillips, 2001;
Dunai, 2010; Balco, 2011).

1V-2.0 Study area location and samples collection

Glacial landforms selection was based on aerial photographs from Cartografia Nacional
mission of 1952. Previous glaciations studies developed by Schubert (e.g. 1972; 1974;
1980; 1992 and 1998) and paleoclimate studies in the Venezuelan Andes (e.g. Salgado-
Laboriau and Schubert, 1977; Schubert and Rinaldi, 1987; Rull 1998; Mahaney et al.,
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2001; Dirszowsky et al., 2005; Stansell et al., 2005; Mahaney et al., 2007) were also
used. Finally, glacial landforms selection was based on geological maps and present-day
climate conditions distributions. We focused the study on the central Mérida Andes
because numerous glaciers landforms are well preserved (see more in Section I11-2.0).
Moreover, this area shows contrasted climate settings (Section III-3.0). Valleys from
Sierra del Norte (Maracaibo Lake influence), Sierra Nevada and Cordillera de Trujillo

(more Los Llanos basin influence) were selected (Figure IV-5).

Figure IV-5. Location of Glacial landforms studied. 1: Mifafi valley 2: El Desecho
moraine, 3: La Canoa moraines, 4: Pueblo Llano moraines, 5: Las Tapias moraines, 6:
Los Zerpa moraines, 7: Mucubaji valley, 8: El Caballo moraine, 9: Mucuchache valley,

10: Gavidia valley, 11: La Culata moraine (DEM from FAQ, 2004).

Sample locations were selected based on geomorphological interpretations of aerial
photographs and field observations. Samples were collected on:

- Striated /polished rocks and roches moutonnées. Samples were carefully

collected on landforms where minimum potential coverage by superficial

deposits and erosion existed.
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- Moraines boulders. Boulders (mainly > 0.4 mz) well-anchored in the moraine to

avoid any post-deposition movements were selected.

Because '"Be production decrease in depth, samples collection have to be restricted to
the first centimeters of the rocks. Samples thicknesses were lower than 5 cm and in
general samples weighed ~ lkg of rock. Because of 'Be production is latitudinal,
altitudinal and topographical shielding dependent, to each sample GPS location,
geological description, topographic shielding and elevation were noticed. A total of 100
samples were collected, prepared and analyzed in the frame of this project (details about
glacial landforms sampled and samples collected to each valley are presented in the

Results section V).

1V-3.0 Samples preparation

Chemical targets were prepared at the cosmogenic laboratory at ISTerre, France. The
methodology followed adapted procedures from Brown et al. (1991) and Merchel and
Herpers (1999). Samples preparation methodology could be divided in 2 steps: quartz
separation from bulk material and Chemical 'Be extraction in the BeO form, to be

discussed next.

IV-3.1 Quartz separation from bulk material
Samples were crushed and sieved. The 200-500 pum fractions were separated from

magnetic minerals using Frantz magnetic separator (when considerable quantities were
present in the sample, determined from visual inspection). Samples (~80-120 g) are
placed in a previous weighed Nalgen bottles. The first chemical attacks were performed
using hydrochloric acid (HCI 36%) to remove any carbonate minerals. In a second time,
samples were mixed with successive HCI (36%)-H,SiFs (35%) solution to remove
minerals except quartz. HCI-HSiFs mixture (from 50%-50% until 10%-90%,
respectively) was changed every ~ 2 days until the sample was pure quartz (until ~ 2

months).

IV-3.2 Chemical "’Be extraction in the BeO form
Once purified, samples were decontaminated from the atmospheric '’Be adsorbed on

quartz by three sequential dissolutions (10% quartz dissolved each one, using ratio 1g of
quartz:4 ml HF) with fluorhydric acid (HF 40%) (Brown et al., 1991). Samples were
dried, quartz mass was weighed and a Be solution (1000 mg/l, Scharlau batch
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14569501, ~300 pg/sample) was added. Spike addition fixe the '’Be/’Be ratio for AMS
measurement and reduces perturbations due to leakage during chemical handling. Total
dissolution was made with HF (1g of quartz:4 ml HF). Analytical blanks were prepared
(each 10-15 samples) using ~50 ml HF and ~500 pg *Be spike.

For safety reasons, the solution is transferred to a Teflon beaker in order to substitute to
HCI1 mixture. This substitution includes successive acid attack to remove organic
compound (using HCIQO,), destroy fluorures (using HNO;3) and finally, substitute in
HCL.

Successive sample precipitations were made to extract "Be using NH,OH. This decisive
step is important because it allows to remove boron from sample because it precipitates

at pH >8 while '“Be precipitates at pH ~7.

The separation of beryllium from other chemical elements was made with ion exchange
resins. The first anion exchange resin (DOWEX 1x8, 100-200 mesh) separates (using
10.2 M HCl) potentially metals highly concentrated in quartz (iron, titanium,
manganese). The second cation exchange (DOWEX 50Wx8, 100-200 mesh, with 1 M
HCl) was used to separate Be from aluminum and its isobar boron. Finally, the solution
is evaporated until ~ 3 ml and precipitated with NH4OH in order to remove the residual
boron. The final step is to precipitate beryllium oxy-hydroxide (Be(OH),) by
evaporation (~200°C) in porcelain capsule. The Beryllium oxide (BeO) is produced by
heating at 900°C. BeO is mixed with niobium (Nb) and placed in a copper cathode to
prepare the sample to AMS analyze.

IV-4.0 "Be concentration determination using Accelerator Mass Spectrometry
(AMS)

The samples were mixed with Niobium in order to improve the conductivity of the
electric current and introduce it in a sample holder (cathode). Analyses were made in
the French AMS facility “ASTERisque” (Aix en Provence). Because of '°B is 10°® times
more abundant than 'Be and have a similar g/m ratio. The '°Be determination is not
possible to realize using a standard Mass Spectrometry (MS) because of the '°B
interference. To minimize this isobar interference, samples were analyzed with the

AMS facility which allows the separation of both isobars (B and '’Be).
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To obtain the '’Be concentration is necessary first to measure "Be/’Be samples ratios
and then, compare to a '"Be/’Be standard ratio (NIST Standard Reference 4325 with a
ratio of 2.79 10"“). The 'Be concentration is determined because the *Be concentration

is known in each sample (the *Be concentration is hold by spike addition).

The samples analyses began with the BeO ionization using the Cesium electrons. The
charged molecules are introduced into the 90° injection magnet where the first
separation is made. Then, BeO is introduced inside the accelerator tank with 5 MV.
Molecules are broken and Be™ are injected in the analyze magnet where the radius
curvature is adjusted to allow the "Be*? and ?Be*? flux to go on to the detector. An
ultimate separation of the remaining B>* is realized by crossing the flux into a carbon
foil. This is based on the Bethe-Bloch law where elements are separated not only with
their charge but also with their atomic numbers (higher is the atomic number, i.e. 5 for
9B and 4 for "Be, higher will be the energy loss, lower will be the capacity to cross the
carbon foil). '’Be and °Be atoms are successively measured in the detector (Figure IV-
6).

Accelerator
ov » 4.5 MV >0V

Analyse magnet

Injection magnet
BeO
A
Stripper
Faraday device
Siz;N, sheet
35° Electrostatic deflector \5/'
Stable isotope ("Be)
Isobare (1B) Detector

= Cosmogenic isotope (’Be)

Figure IV-6. Accelerator Mass Spectrometry machine in the ASTERisque laboratory. It
shows the different isotopes trajectories until the detector (Modified from Le Roy, 2012)
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The analytical incertitude (6R () is calculated using the counts number of «10B¢ event”
in the analyzer detector (n). The analytical incertitude is determinate by multiple

standard ratios measures (6R;g9nis7) and using the next errors propagation equation:

Equation IV-4

1V-4.1 °Be concentration calculation

The isotopic ratio (R;g0) has to be transformed in beryllium atoms per quartz grams
(N10) to obtain the time exposition ages. In the samples there are three main Be
sources: a) from the sample rock (n;9 S and ngs), b) the °Be spike (n;9 € and l’lgc) and ¢)
possible sample pollution during preparation (n;9 “and n9") (coming from acids or in

general used chemical reactive). The isotopic ratio could be represented by:

S c P
Mo T N T Mo
ms+ mc+ngp

R{m,.fg} =

Equation IV-5

Because of natural '’Be abundance in the environment is very low and °Be is fixed by
the addition of spike (~300 pug), (n9° +n9") is assumed to be negligible. The possible
addition of '°Be present in the spike and acids is related to the chemical blank (n ]OB ).

Equation III-5 could be written as:

Equation IV-6

The number of atoms of *Be spike added in the sample is calculated using:

?'I@C — MCNA
Aﬂc

Equation IV-7
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Where Mc is the spike mass added to each sample, N, is the Avogadro’s number (6.022

10% at.mol'l) and Ap, is the molar mass of beryllium (9.012 g. mol'l).
°Be concentration in the sample (Njo) is obtained from:
Ny =

Equation IV-8
Where 1,4’ is the '°Be atoms number in the sample and M, is the quartz mass.
Then, substituting equations IV-7 and IV-8 in equation IV-5 is possible to determine

'Be concentration as a function of isotopic ratio (Rigp), the quartz mass sample (M,)

and the *Be spike mass (Mc).

Ny =

]. ( Rlﬂ,."'gMCNA
Mq \ AB::

- G’Irmg)
Equation IV-9

And n;,° is the °Be from the blank. For each chemical sample set, 2 blanks were
prepared and their weighted average was subtracted from the beryllium ratios of sample,

where n;4° could be determined by:

B__ RIO,.-"QBMCBN A

Nw — A
Be .
Equation IV-10
Finally, combining equations IV-9 and IV-10 is possible to determine the '’Be

concentration for each sample:

(RI D_.-"QML'-' o -1?1[3_.-’9‘E MCB) N—i

Nl(} - MqAﬂg

Equation IV-11 or
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( 1&;‘95 — Rm_;‘ 93) N, gc
10—
M,

Equation IV-12

IV-5.0 °Be production rates, erosion value, scaling scheme and exposure ages
calculation

SLHL production rates have been determined by three methods (Gosse and Phillips,
2001): (1) geological calibration based on accurate dated surfaces (using another
geochronology method, as “C or U-Th system). (ii) determined by laboratory
measurements by two ways: 1) using slabs of known composition which have been
exposed in a nuclear accelerator beam line particles with energy similar to the
secondary radiation flux on the Earth. 2) Using target materials which are exposed to
actual cosmic radiation at high altitudes for periods of years (iii) by numerical
simulation of the nuclear interactions and other physical processes that produce
cosmogenic nuclides. Although all three have been useful, spallogenic production rates
used in most cosmogenic nuclides applications have been derived from geological
calibration (Gosse and Phillips, 2001). Production rates are scaled to sea level at high
latitudes (SLHL). For tropical latitudes where the magnetic field modulation is
maximum, there was significant uncertainties about the scaled '°Be production rates as
is suggested in Carcaillet et al. (2013) (Results Section V-2.1.1) and Angel et al.,

“under review” (Results Section V-2.1.2).

Some recent production rates have been determined at high altitudes in the tropical
Andes. Kelly et al. (2013) estimated a (SLHL) in situ 10Be production rate in Quelccaya
Ice Cap (13.95°S, 70.89°W, 4857 m), in the tropical Peruvian Andes, which range
between 3.97+0.09 to 3.78+0.09 at.g’.yr' for 4.5 m/Myr and 0 m/Myr erosion
respectively. Blard et al. (2013) computed a (SLHL) production rate of 3.63+0.17 at.g"
"yr" from the Bolivian Uturuncu volcano (22° S, 67° W, 3800-4900 m). Martin et al.
(2015) computed a SLHL production rate of 3.76 £ 0.15 at.g_l.yr_lfrom the Challapata
fan-delta in Bolivia (19°S, 3800 m). However, at the beginning of this project, these
production rates were unavailable. In this project was initially used the global SLHL
""Be production rate published by Balco et al. (2008) (4.39 + 0.37 atoms g yr™') (used

in the Mucubaji article Chapter V). Then, a production rate was determined in the
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Andes by Kaplan et al. (2011) (3.8120.13 at.g”.yr’") and it was used in the Gavidia
article (Results Section V). Finally, a “tropical” SLHL production rate from Kelly et al.
(2013) allowed to precise the ages. All the TCN exposure ages from this project
(Carcaillet et al., 2013; Angel et al., “under review”) and from previous published
studies (Wesnousky et al., 2012; Guzman, 2013) were recalculated (Section Results V).
The Kelly’s production rate was selected because it was available in the CRONUS
online calculator and the value is consistent with the one published by Martin et al.

(2015).

Low long-term erosion rates of the rock surfaces in the tropical Andes have been
reported between 0.3-0.5 m.Myr”' (Smith et al., 2005b) and 4.5 m.Myr" (Kelly et al.,
2013). Smith et al. (2005b) studied moraines boulders from the Junin Plain in the
central Peru at elevations between 4200-4400 m. Kelly et al. (2013) studied moraines
boulders from the Quelccaya Ice Cap, Peruvian Andes at around 4800 m. Simulation
considering exposure age of GA-1301FE give 16.39 ka and 17.39 ka with erosion 0
cm/yr and 4.5 cm/yr, respectively. Ages differences are around 6%. For this reason and
because most of the sampled surface indicate the presence of the striations and polished
surfaces, erosion rate of 0 m.Myr'1 was assumed for calculations. Moreover calculations
are based on the assumption of no '’Be inheritance. No snow coverage correction was
considered because the snow falls are low and MA climate conditions prevent long

periods of snow cover.

Balco et al. (2008) CRONUS online calculator is used for calculations. The selected
scaling scheme is the time dependent model from Lal (1991), modified by Stone (2000).
It was selected because it considers the geomagnetic field variation (Balco et al., 2008).
This is important in the present study because the magnetic modulation has a
particularly critical effect in the vicinity of the magnetic Equator where the samples

were collected.

1V-6.0 Geomorphological analysis and former glaciers reconstructions

To develop a geomorphological interpretation of the glacial landforms, aerial
photographs and a digital elevation model (DEM) with a 30 m resolution (FAQ, 2004)

were used. Moreover, Google Earth images and software ArcGIS 10.0 were also used.
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Former glacier outline reconstruction was based on field observations and aerial
photographs and DEM geomorphological interpretations. Catchment delimitation was
performed using River Tools. Then more exactly former glacier delimitations were
made based on exposure ages and geomorphological interpretation (i.e. glacier front
from a glacial landform with exposure age until glacier cirque considering glacier
thicknesses). Thicknesses were calculated using the excel spreadsheet from Benn and
Hulton (2010). This excel spreadsheet assumes a perfectly plastic ice rheology (i.e. ice
return to the original position after stress is eliminated). It is based on the assumption
that the ice deforms in response to the driving stress (t°) (stress produced by the glacier
weight effects). The ice moves when the driving stress is equal to the yield stress (t*;
the stress after which glacier has not a plastic rheology; Equation IV-13; Benn and

Hulton, 2010).

Ty = Tp = pgH ij
Equation IV-13
Where p is the ice density (~900 kg/m®), g is the gravitational acceleration (9.81 m/s?),
H is the glacier thickness, h is the ice surface elevation and x is the horizontal
coordinate (with the glacier front as 0 m), with the x-axis parallel to the glacier flow.
This model is particularly adapted to reconstruction of former glaciers with low slopes
such icecap but it has been used for reconstruction of valley former glaciers (e.g. Zebre
and Stepisnik, 2014). This model was used in this dissertation because more systematic
thicknesses are obtained, especially when target elevations (elevations of glacier

landforms which could indicate glacier thickness) are not extensively available in the

field.

Variable inputs in the model are: the longitudinal profiles (horizontal x and vertical y)
of the valley bottom, shape factors (consider the valley shape restrictions in the glacier
movement) which were obtained for each transverse topographical profile using Profiler
v.2 spreadsheet from Benn and Hulton (2010). Target elevations and basal shear stress
were also variables to use as inputs. Moraine thickness could be used as a target
elevation but this value was not available to all former glaciers. Therefore,
reconstructions based on a sensitivity analysis considering a range of basal shear stress
for modern glaciers (50, 100 and 150 kPa; Paterson, 1981) was made. The basal shear

stress is the normal stress (perpendicular) at the glacier base.
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The ice surface elevation to each point along the longitudinal profile in the flow line
was the most important result of the model. For each longitudinal profile, three ice
surfaces were obtained (for three different basal shear stresses of 50, 100 and 150 kPa).
The former glaciers were reconstructed using contour intervals each 100 m in a
geographical information system (ArcGIS; Figure IV-7). La Victoria, Mifafi and La
Canoa/Pueblo Llano former glacier was reconstructed using 200 m contours intervals.
Ice surface contours have been drawn based on current world glaciers. Contours display
a distinct pattern, becoming increasingly concave below and convex above the ELA,
while remaining almost straight at the approximate mean altitude of the glacier (Porter,

1975; Carr and Coleman, 2007; Carr et al., 2010).

Figure IV-7. Former glacier located in the Mucubaji valley at 21 ka and contours
drawn. a) The red point shows the sample location and age of the frontal moraine used
to draw the former glacier polygon. b), c), d) Former glaciers polygons and contours to

each basal shear stress (50, 100 and 150 kPa).
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For each valley at a specific age (the exposure age obtained for a glacial landform)
(Figure IV-7), three ice surfaces were obtained (for 50, 100 and 150 kPa). Then, to each
ice surface a DEM was reconstructed using ArcGIS 10.0 and was used as an input for

paleo ELA calculations using Pellitero et al. (2015).

IV-7.0 Paleo ELA reconstruction

The Mucubaji, Mucuchache and Mifafi valleys; Los Zerpa, La Victoria, El Caballo and
La Canoa moraines were selected to determine paleo ELA values. The objective was to
deduce paleoclimate conditions along the Sierra Nevada and Sierra del Norte-Cordillera
de Trujillo. Paleoclimate deductions were made considering paleo ELA variations

trends and paleoclimate proxy records.

Multiple methods have been mentioned in the bibliography to reconstruct former
glaciers ELA in the tropics (e.g. Porter, 2001; Kaser and Osmaston, 2002; Benn et al.,
2005). All methods involve a hypothetical steady-state where no advance and retreat
happened at the time of the ELA calculation. Methods commonly used are: (1)
Accumulation Area Ratios (AAR); (2) Area—Altitude Balance Ratios (AABR); (3)
Maximum Elevation of Lateral Moraines (MELM); (4) Terminus to Head Altitude
Ratios (THAR); and (5) gross morphological indices such as glaciation threshold and
cirque floor altitudes (Stansell et al., 2007). In the frame of this project the
Accumulation Area Ratios (AAR) and Area—Altitude Balance Ratios (AABR) were the
used methods. It is because these methods are based on assumed forms of the glacier

mass—balance gradient, more compatible with the concept of the steady-state ELA.

IV-7.1 Accumulation-area ratio (AAR)
This method assumes that, under steady-state conditions, the accumulation area of the

glacier (Sc in Figure IV-8) occupies a fixed proportion of the glacier area (Sc+Sa in
Figure IV-8). Steady-state AARs (Sc¢/Sc+Sa) for mid- and high-latitude glaciers lie in
the range 0.5-0.8 (Meier and Post, 1962; Hawkins, 1985), with typical values around
0.55-0.65 (Porter, 1975). Because of glaciers in the humid tropics have steeper ablation
gradients and less steep accumulation gradients than the mid-and high-latitude glaciers,
they tend to have higher steady-state AARs (~0.8; Kaser and Osmaston, 2002). Former

steady-state AARs may substantially differed from modern values in the same region. It
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is due to changes in the climatic regime, debris cover or glacier hypsometry, so

precautions are required to select the most suitable ratio.
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Figure 1V-8. Method for paleo ELA reconstructions “accumulation-area ratio” (AAR).
Accumulation area (S.), ablation area (S,), glacier steady state (SS) (Modified from
Porter, 2001).

1V-7.2 Area—Altitude Balance Ratios (AABR)
The AABR method considers mass balance gradients and reconstructed glacier

hypsometry. This method is based on the assumption of the ablation (b,) and
accumulation (b.) gradients are linear and its ratio (BR= b,/b.) is known. For glacier
free of debris cover, BR is typically 1.8-2.0 in the mid-latitudes and > 3 in the tropics
(Kaser and Osmaston, 2002).

AAR and BR ratios at high or mid-latitudes are better constrained than in the tropics
because uncertainties are higher (e.g. Rea et al., 2009). Mass balance data of the current
glacier relict located in the Mérida Andes is absent. Without references of balance ratios
in this region, paleo ELA calculations were made using sensitivity analysis (i.e.
different ratios used in general in the tropical glaciers were evaluated). Selected AAR
ratios were 0.73 and 0.82. BR ratios of 5 and 10 were used. These values were selected

based on observed ranges for tropical glaciers from Kaser and Osmaston (2002). These
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ratios were also used because are recommended by Stansell et al. (2007) who

reconstructed paleo ELA in the MA during the Last Glacial Maximum (LGM).

A GIS tool running in ArcGIS was used to estimate AAR and AABR ELA values
(Pellitero et al., 2015). For each valley three paleo glacier surfaces (corresponding to 50,
100 and 150 kPa shear stresses) were obtained for a specific ages (the age obtained from
the '“Be cosmonuclide dating). Data helped to build a DEM in order to reconstruct
former glacier surface and then it was used for paleo ELA calculations. Thus, three

paleo ELA values were also obtained to each valley at a specific age.

1V-7.3 Paleo ELA corrections
It is important to consider the sea level changes and uplift effect on the paleo ELA.

During 22-17 Cal kyr BP, sea-level was between 115-125 m lower than today
(Fairbanks, 1989; Hanebuth et al., 2000; Yokoyama et al., 2000). The eustatic fall of
sea-level leads to raise the overall elevation of the topography. Paleo ELA should thus
be corrected from this change (Porter, 2001). However, the transfer of the water budget
from the oceans to land displaced enough atmospheric mass to compensate the lower
sea level. Recent study recommended not correcting paleo ELA from this effect

(Osmaston, 2006). In the following, no sea level change corrections were considered.

However, uplift corrections of paleo ELA must be considered (Osmaston, 2006)
because during after uplift a single point in the topography is higher comparing to its
initial elevation and involves different climate conditions. In the central MA uplift rates
are estimated at ~1 mm/a (Audemard, 2003; Wesnousky et al., 2012; Guzman et al.,
2013). Elevation increase for post MIS 3 periods is ~30 m. Because this value is in the

range of paleo ELA uncertainties, this correction was not considered.
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PART II. SECTION V. RESULTS

The central Mérida Andes was selected because glacial landforms are the best preserved
in the Venezuelan Andes. Integration of data obtained in this dissertation and those
from the bibliography, significantly contributes with the deglaciation history in the

northern Andes. Results are presented in three subsections:

V-1.0 Generalities about studied glacial landforms and detail of TCN dating
(**Be concentrations, '°Be production rates and exposure ages). V-1.0 explains why
glacier landforms were chosen. Moreover, a specific aspect dealt with concerns the

input parameters used to calculate TCN ages ('’Be production rates, blank values).

V-2.0 Detailed glacial geomorphological features and deglaciation
chronologies. V-2.0 is dedicated to the description of the glacial geomorphology in all
the locations studied. Previous studies in the different valleys, samples location and

exposure ages are also presented.

V-3.0 Paleo ELA values. Previous related studies developed in the central MA

are briefly described in relation with data computed in this present study.

V-1.0 Generalities about studied glacial landforms, "’Be concentrations, "’Be

production rates and exposure ages
V-1.1 Why glacial landforms studied?

The deglaciation histories in the central MA are poorly constrained because of the
lack of detailed deglaciation valley studies. To resolve this lack, several valleys were
sampled: Mifafi (6 samples), Mucubaji (14 samples), Mucuchache (7 samples) and
Gavidia (24 samples) (Figure V-1). These valleys were studied to understand the causes
of former glaciers dynamics variabilities supposed between the northern Sierra Nevada
and the southern Sierra del Norte hillsides. Sierra Nevada is the most studied area
because current glaciers remains are still present (less than 0.017 km? Braun and
Bezada 2013). More valleys of this area were studied to bring high resolution of the

Sierra Nevada deglaciation history.

The area where valleys were studied (between Mifafi, Mucubaji, Mucuchache and
Gavidia, Figure V-1) is dry as suggested by the arid plant cover. The annual

precipitation in the Mifafi valley can be estimated from the one of the Pico Aguila
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station (860 mm) (Figure V-1, Table V-1). In the Mucubaji valley the annual
precipitation is 968 mm (Mucubaji station). San Rafael de Mucuchies meteorological
station close to the Gavidia and Mucuchache valleys indicate an annual precipitation of
630 mm (Figure V-1). Sierra de Santo Domingo is wetter than Sierra Nevada with
annual precipitation higher than 1000 mm (Santo Domingo station, 1359 mm and
Pueblo Llano station, 1251 mm). In this area, different morphological features as valley
bottom slopes and accumulation zone aspects are present. For example, the Mucubaji
valley presents abrupt slopes changes (~5-7° and more than 20°) and accumulation zone
oriented NW-SE. Whereas the Gavidia valley has nearly low and homogeneous slopes

(between 5-7°) and accumulation zone oriented NE-SW.

Figure V-1. Location of tudied glacial landforms and meteorological stations in the
central MA. Glacial landforms in numbers 1-11. Meteorological stations in letters A-F.
1: Mifafi valley 2: El Desecho moraine, 3: La Canoa moraines, 4: Pueblo Llano
moraines, 5: Las Tapias moraines, 6: Los Zerpa moraines, 7: Mucubaji valley, 8: El
Caballo moraine, 9: Mucuchache valley, 10: Gavidia valley, 11: La Culata moraine. A:
Pdramo La Culata. B: Pico Espejo. C: San Rafael de Mucuchies. D: Mucubaji valley.
E: Santo Domingo. F: Pueblo Llano.
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Table V-1. Mean annual temperature and precipitation from meteorological stations in
the central MA (Monasterio and Reyes 1980 and Instituto Nacional de Meteorologia e

Hidrologia de Venezuela INAMEH http://www.inameh.gob.ve). In parenthesis, letter

identifying meteorological station letter in Figure V-1.

Elevation Mean Annual rainfall

Station Latitude Longitude (m) temperature (mm)

Paramo de La Culata (A) 8.73 -71.10 3027 10 1170
Pico El Aguila B) 8.85 -70.82 4118 2.8 798

San Rafael de Mucuchies

©) 8.76 -70.87 3156 10.6 630

Mucubaji (D) 8.80 -70.82 3550 54 968
Santo Domingo (E) 8.85 -70.68 2155 16.1 1359
Pueblo Llano* (F) 8.92 -70.66 2369 16.3 1261

To improve the Mérida Glaciation reconstruction glacier advances in the Sierra del
Norte, Sierra Nevada and Cordillera de Trujillo (Pueblo Llano-La Canoa moraines)
were studied. In Sierra del Norte, terminal moraines from El Desecho (3 samples) and
La Culata (3 moraines, 12 samples) were dated. The Mifafi former glacier was
delimited studying a lateral moraine located between Mifafi valley and El Desecho
moraine (MIF moraine, 3 samples, Figure V-1). In Sierra de Santo Domingo, Los Zerpa
(3 samples) and Las Tapias terminal moraines (3 samples) were studied. In the Sierra
Nevada, El Caballo (3 samples), Mucubaji and Mucuchache moraines were studied. In
the Trujillo Cordillera the terminal moraine from La Canoa (2 samples) and frontal
moraines from the Pueblo Llano valley (2 moraines, 6 samples) were dated. These

moraines are located at the lowest elevations between 2500-2850 m

Sampled glacial landforms were moraine boulders and roches moutonnées (Figure V-2).
Sampled materials were at sufficient height above the surface, in order to minimize the
potential coverage by superficial deposits. Sampled boulders are well-anchored to avoid

any post-depositional movements (Figure V-2).

V-1.2 '°Be concentrations
Beryllium 10 concentrations were deduced from AMS analyses and calibrated against

NIST Standard Reference Material 4325. This Standard Reference Material use a
certified '’Be/’Be ratio of 2.79 + 0.03.10 "' and a '’Be half-life of 1.387 + 0.012.10° yr
(Korschinek et al., 2009; Chmeleff et al., 2010). Samples preparation and analyses were
carried out in four campaigns. Four '’Be/’Be blanks values were used to correct samples

ratios. These values range from 1.96+0.61.10™" to 2.97+0.74.10™" (Table V-2). The
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"“Be concentrations range from (225.00 + 8.31 to 1426.90 + 45.71).10° atoms per gram
of quartz (at. g'l) (Table V-2).

Figure V-2. Examples of landforms sampled. A) Moraine boulder in La Culata moraine.
B) Moraine boulder in La Mucuchache moraine. Postglacial valley with u-shape is also

observed. C) Roche moutonnée in the Gavidia valley.

V-1.3 '°Be production rates used and influences in the exposure ages
Different '°Be production rates (i.e. production rate by neutron spallation appropriate

for sea-level, high-latitude sites SLHL) were used. Initially, a global averaged "Be
production rate reference of 4.39 + 0.37 atoms g~ yr~' (Sea-Level High-Latitude SLHL)
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Table V-2. '°Be concentrations results of the central Mérida Andes. (a) The shielding
factors were calculated following the method of Dunne et al. (1999). (b) Samples were

prepared and analyzed in four campaigns, blank values are indicated.

10
Samples Tiailmple Shieldi(l;)g Origina}l scaled Bl::llrfli!/g)](3 i()' ' Be concentraction
ickness  factor production rates 15(b)
Spallations Muons Value Uncertainty
cm atoms/g/yr 10° atoms/gQtz/yr
Do 02-09 3 0.933 28.18 0.624 578.59 60.14
Do 03-09 5 0.956 28.06 0.614 544.90 31.10
Do 05-09 3 0.962 27.74 0.609 483.46 40.89
Do 06-09 4 0.480 13.59 0.602 279.95 12.68
Do 07-09 4 0.992 28.16 0.603 533.66 45.35
Do 08-09 4 0.971 26.68 0.592 479.88 21.06
PL-0109 4 0.986 15.48 0.442 299.18 24.35
PL-0209 4 0.983 15.31 0.440 284.77 24.12
LZ09-01 3 0.980 20.35 0.471 301.42 27.95
LZ09-02 3 0.981 20.22 0.469 270.19 19.41
Mu09-01 4 0.986 26.16 0.535 477.12 16.54
Mu09-02 3 0.999 26.32 0.533 5 30+0.85 522.40 41.55
Mu09-03 3 0.999 26.08 0.531 440.60 28.60
Mu09-04 4 0.996 26.25 0.533 372.93 11.46
Mu09-05 4 0.995 26.33 0.535 375.45 27.10
Mu09-06 2 0.995 26.86 0.541 463.22 34.48
Mu09-07 3 0.907 25.20 0.549 374.12 16.53
Mu09-08 3 0.951 26.82 0.553 408.50 16.71
Mu09-10 4 0.941 30.94 0.601 306.04 9.55
Mu09-11 3 0.819 29.03 0.627 334.55 10.27
Mu09-12 3 0.941 31.55 0.608 324.42 26.38
Mu09-13 3 0.897 28.58 0.591 301.52 9.74
Mu09-14 3 0.945 28.44 0.573 305.27 24.76
Mu09-15 3 0.968 28.32 0.564 390.44 34.08
GA-1201 3 0.488 8.88 0.480 225.00 8.31
GA-1203 1 0.942 19.10 0.510 294.39 22.92
GA-1205 1.5 0.927 19.24 0.515 334.48 43.33
GA-1206 2 0.920 19.66 0.523 375.30 19.66
GA-1207 2 0.989 21.93 0.533 410.76 18.19
GA-1208 L 6 0.543 12.15 0.535 2.97+0.74 306.78 16.78
GA-1209 1.5 0.934 21.05 0.539 364.73 19.10
GA-1211 3 0.973 22.33 0.543 388.66 14.74
GA-1212 35 0.829 19.73 0.553 374.10 18.62
GA-1213 2 0.955 23.85 0.569 444.47 15.66
GA-1214L 5 0.999 2521 0.571 467.38 16.45
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Table V-2 (cont.)

GA-1215L 5 0.985 24.59 0.567
GA-1216 L 2.3 0.523 13.22 0.572
GA-1217L 3.5 0.520 12.89 0.565
GA-1218 L 2.5 0.524 13.00 0.566

GA - 1301FE 2 0.958 25.08 0.583

GA - 1302FE 3 0.922 24.59 0.588

GA - 1303FE 4.5 0.922 23.88 0.579
GA - 1301 4 0.995 25.88 0.580
GA - 1302 1 0.973 26.38 0.597
GA - 1303 5 0.992 28.36 0.611
GA - 1304 5 0.984 28.88 0.619
GA - 1305 2 0.985 29.49 0.628
GA - 1306 2.5 0.982 26.06 0.587
CU - 1301 4 0.984 20.03 0.505
CU - 1302 4 0.981 20.10 0.507
CU - 1303 5 0.987 23.15 0.544
CU - 1304 1.5 0.981 24.34 0.502
CU - 1305 4 0.98 23.17 0.547
CU - 1306 4 0.978 22.76 0.542
CU - 1309 4 0.956 20.08 0.514
CU - 1310 2 0.987 21.65 0.526
CU - 1311 3 0.981 20.85 0.517
CU - 1312 3 0.958 19.68 0.508
CU - 1313 3 0.960 19.94 0.510
CU - 1315 2.5 0.988 19.90 0.502

MUCU -1401 2 0.990 23.56 0.480

MUCU-1402 2 0.985 23.32 0.510
MUCU-1403 3 0.985 23.12 0.515

MUCUF-1401 4 0.875 19.73 0.523

MUCUE-1402 4 0.811 19.01 0.533

MUCUF-1403 3 0.857 20.48 0.535

MUCUEF-1404 4 0.796 17.51 0.526

TAPIAS-1401 4 0.980 17.03 0.465

TAPIAS-1402 3 0.980 17.16 0.467

TAPIAS-1403 3 0.980 17.27 0.469
CABA-1401 3 0.994 24.74 0.562
CABA-1402 4 0.982 24.13 0.558
CABA-1403 4 0.982 24.08 0.557
MIF-1401 3 0.968 23.35 0.552
MIF-1402 4 0.968 23.35 0.552
MIF-1403 1 0.968 2335 0.552
DESE-1401 3 0.984 21.86 0.529
DESE-1402 4 0.984 21.96 0.531
DESE-1403 4 0.996 22.02 0.528

2.28+0.59
1.96+0.61

1.96+0.61

440.60 15.77
363.55 24.36
359.80 21.77
426.25 14.71
438.48 13.71
459.75 14.62
372.93 20.96
461.34 14.75
469.50 16.66
507.51 1591
499.87 15.51
509.09 15.89
454.03 17.19
353.89 13.17
371.10 12.16
427.85 51.43
407.71 13.44
428.23 24.85
427.30 46.55
396.53 23.06
522.38 57.65
392.49 14.55
375.14 14.39
391.15 13.93
358.78 16.28
667.86 32.55
972.23 37.19
1020.45 36.31
380.09 15.78
111.81 13.47
410.21 13.37
384.58 25.03
356.76 14.43
314.52 19.28
360.40 15.54
862.78 34.57
927.13 36.16
738.68 25.18
445.11 21.22
492.01 35.94
428.27 22.74
409.90 20.60
416.89 14.00
517.28 71.88
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Table V-2 (cont.)

PL-1405 4 0.973 14.44 0.429 1315.70 47.16
PL-1406 5 0.976 14.14 0.425 1070.43 35.72
PL-1407 5 0.973 14.22 0.426 1426.90 45.71
PL-1408 5 0.973 13.45 0.415 838.75 26.12
PL-1409 5 0.973 13.45 0.415 944.10 29.95
PL-1410 5 0.973 13.45 0.415 771.26 24.22

was used (Balco et al., 2008). A specific value for a low latitude area (tropical Andes)
was firstly unavailable. Originally exposure ages from the Mucubaji valley and Los
Zerpa moraines (Carcaillet et al., 2013, section V-2.1.1) were computed using the
global average production rate (Table V-3). A second '’Be production rate used was
obtained from the Lago Argentino in the Andes mountains (Kaplan et al., 2011). It is
3.81+0.13 at.g.yr'. Original exposure ages from the Gavidia valley were calculated
using Kaplan et al. (2011) (Table V-3). These values are also presented in a submitted
article in section V-2.1.2 (Angel et al., submitted). Recently, a SLHL “tropical” '’Be
production rate was proposed. It is 3.78+0.09 at.g”.yr" (when erosion is 0 cm/yr Kelly
et al., 2013). This value was determined for the tropical Peruvian Andes and is suitable
for high altitudes/low latitudes areas. This value is more convenient to compute results
from the Mérida Andes. Thus, a final exposure ages updated based on Kelly et al.
(2013), when erosion is 0 cm/yr, was made for all the studied glacial landforms.
Mucubaji valley and Los Zerpa moraines updated results are around 14 % older than the
original values, whereas updated results from the Gavidia valley are ~ 3 % older than
the original values (Table V-3). Exposure ages range from 5.84+0.7 to 83.7+£3.4 ka
(Table V-3).

The topographic shielding factors were calculated following the method of Dunne et al.
(1999) (Table V-2). No snow coverage correction was considered because the snow
falls are low and MA climate conditions prevent long periods of snow cover. All the
ages were computed using Cronus online calculator from Balco et al. (2008). The
selected scaling scheme is the time dependent model from Lal (1991) modified by Stone

(2000).
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Table V-3. Exposure ages in the central Mérida Andes. Original values are referred to the Mucubaji, Los Zerpa and Gavidia results which are

present in a published (Carcaillet et al., 2013) and submitted article (Angel et al., submitted) (see section V.1.1.3 for details). Modified exposure

ages were computed using Kelly et al. (2013) "’Be production rate.

Samples Latitude | Longitude | Elevation | Site information Boulder size Original Modified
Ages Ages
External Internal External Internal
Value . . Value . .
uncertainty | uncertainty uncertainty | uncertainty
°N °W m ka ka
Pegmatite dome.
Do 02-09 8760 | -71.05 4981 Glacial step. 19.185 | 2.052 2.109 - - -
Pegmatite dome.
Do 03-09 8763 | 71050 | 4172 Boulder. 1x1.7x1 18.224 | 1127 1.095 - - -
Pegmatite dome.
Do 05-09 8774 | 71033 | 4097 Glacial step. 16521 1454 1455 - - -
Pegmatite dome.
Do 06091 9973 | 71036 | 497° | Glacial step. 18.899 |  0.965 0.902 - - -
Valley axis.
Do 07-09 8773 | -71.039 | 208l Glacial step. 17.841 1578 1.592 - - -
Valley axis.
Do 08-09 8766 | 71048 | ‘12 | Gilacial step. 17.001 | 0.846 0.779 - - -
Left lateral-
PL-0109 8930 | -70.601 | 2910 | el moraine 3x3x4 18208 | 1.547 1.544 - - -
Right lateral-
PL-0209 8927 | -70690 | 2896 | ~EMtEeC 6.5%5.5x 4 ses | 1550 546 ) . ]
Frontal moraines
Lz09-01 8812 | 70788 | 3127 | crest Boulder 42x27x1 13.8 1.7 1.4 - - -
Frontal moraines
LZ09-02 8812 | -70.787 | 3113 | crest Boulder 37x2x23 125 1.4 0.9 149 11 11
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Samples Latitude | Longitude | Elevation | Site information Boulder size Original Modified
Ages Ages
External Internal External Internal
Value . . Value . .
uncertainty | uncertainty uncertainty | uncertainty
°N °W m ka ka

Mu09-01 Frontal moraines

8801 | 70828 | 3620 | crest Boulder 7x45x4 16.8 L5 0.6 19.9 0.8 0.7
Frontal moraines

Mu09-02 8795 | 70834 | 3589 | crest Boulder 1.6x1.2x09 18.1 2.1 0.6 215 1.8 1.8
Frontal moraines

Mu09-03 8795 | -70.827 | 3572 | crest Boulder 1.7x 1.5x07 157 1.7 11 18.5 1.3 1.3
Frontal moraines

Mu09-04 8787 | -70.823 | 3607 | crest Boulder 13x1x0.8 133 1.2 0.4 15.8 0.6 0.5
Frontal moraines

Mu09-05 8785 | -70.823 | 3615 | crest Boulder 35x1.5x12 133 L5 1.0 15.9 1.2 1.2
Frontal moraines

Mu09-06 8785 | -70.822 | 3620 | crest Boulder 14x13x0.8 16.0 1.8 1.3 18.9 L5 1.5
Striated bedrock

Mu09-07 8779 | -70820 | 3697 valley axis 138 1.3 0.6 164 08 0.8
Striated bedrock

Mu09-08 8779 | 70819 | 3727 valley axis ~2 m high 142 13 0.6 16.8 0.8 0.7
Striated bedrock

Mu09-10 8767 | 70813 | 4067 valley axis ~2 m high 9.1 0.8 0.3 11.0 0.4 0.4
Mu09-11 Moraine boulder

8763 | 70812 | 4213 Boulder 2x1.5x 1 10.6 1.0 0.3 12.9 0.5 0.4
Striated bedrock

Mu09-12 8766 | -70.812 | 4091 valley axis 9.5 L1 038 1.5 1.0 1.0

Moraine valley
Mu09-13 8760 | -70816 | 3982 | axis Boulder 3x2x 15 9.7 0.9 0.3 118 0.5 0.4
Moraine valley

Mu09-14 8772 | 70815 | 3862 | axis Boulder 15X 1.5x 15 9.9 1.2 0.9 12.0 1.0 1.0
Striated bedrock

Mu09-15 8776 | -70.816 | 3804 valley axis 129 1.6 1.2 154 14 1.4

GA-1201 8694 | 70940 | 3198 | Polished rock 21.7 11 0.9 225 1.0 0.9
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Samples Latitude | Longitude | Elevation | Site information Boulder size Original Modified
Ages Ages
External Internal External Internal
Value . . Value . .
uncertainty | uncertainty uncertainty | uncertainty
°N °W m ka ka
Roche
GA-1203 8.674 70.919 3374 moutonnée 14.0 1.2 1.2 14.6 1.2 1.2
Roche
GA-1205 8.667 70.912 3428 moutonnée 15.6 2.1 2.2 16.3 2.1 2.2
Roche
GA-1206 8.663 70.909 3494 moutonnée 17.0 1.1 1.0 17.7 1.0 1.0
Roche
GA-1207 8.662 70.906 3568 moutonnée 16.8 0.9 0.8 17.4 0.9 0.8
Polished rock (
GA-1208 L 8.654 70.909 3635 side-wall valley) 21.8 1.4 1.3 22.6 1.3 1.3
Boulder in a
GA-1209 8.653 70.908 3592 lateral moraine 1.5x1.8x1.2 15.6 1.0 0.9 16.2 0.9 0.9
Roche
GA-1211 8.648 70.910 3654 moutonnée 15.7 0.8 0.7 16.3 0.7 0.6
Roche
GA-1212 8.646 70911 3737 moutonnée 16.9 1.0 0.9 17.6 1.0 0.9
Roche
GA-1213 8.641 70.916 3810 moutonnée 16.7 0.8 0.6 17.3 0.7 0.6
Polished rock (
GA-1214 L 8.648 70.915 3884 side-wall valley) 16.6 0.8 0.6 17.3 0.7 0.6
Polished rock (
GA-1215L 8.648 70.916 3870 side-wall valley) 16.1 0.8 0.6 16.7 0.7 0.6
Polished rock (
GA-1216 L 8.647 70.915 3840 side-wall valley) 23.3 1.6 1.8 24.2 1.7 1.8
Polished rock (
GA-1217L 8.647 70.915 3820 side-wall valley) 23.6 1.6 1.6 24.6 1.6 1.6
Polished rock (
GA-1218 L 8.644 70.914 3805 side-wall valley) 27.2 1.3 1.1 28.2 1.2 1.1
GA - 1301FE 8.646 70.926 3909 Roche moutonnée 15.7 0.7 0.5 16.4 0.6 0.5
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Samples Latitude | Longitude | Elevation | Site information Boulder size Original Modified
Ages Ages
External Internal External Internal
Value . . Value . .
uncertainty | uncertainty uncertainty | uncertainty
°N °wW m ka ka
Roche
GA - 1302FE 8.643 70.930 3964 moutonnée 16.7 0.8 0.6 17.4 0.7 0.6
Roche
GA - 1303FE 8.641 70.930 3929 moutonnée 14.1 0.9 0.9 14.7 0.9 0.9
Roche
GA - 1301 8.647 70.924 3930 moutonnée 16.0 0.7 0.6 16.7 0.7 0.6
Roche
GA - 1302 8.649 70.923 3964 moutonnée 16.0 0.8 0.6 16.7 0.7 0.6
Roche
GA - 1303 8.655 70.927 4150 moutonnée 16.1 0.7 0.6 16.7 0.7 0.5
GA - 1304 8.626 70.933 4208 Striated rock 15.6 0.7 0.5 16.2 0.6 0.5
GA - 1305 8.625 70.933 4197 Striated rock 15.7 0.7 0.5 16.2 0.6 0.5
Roche
GA - 1306 8.631 70.924 3945 moutonnée 15.8 0.8 0.7 16.3 03 0.6
CU - 1301 Boulder in a lat.-
) 8.760 -71.052 3401 ter. left moraine 1x1x1 16.811 0.739 0.649 - - -
Boulder in a lat.-
CU- 1302 8763 | -71.050 | 3414 | ter. left moraine 1x2x3 17491 | 0.704 0.597 - - -
CU - 1303 Boulder in a lat.-
) 8.774 -71.036 3701 ter. left moraine 1x1.2x0.6 17.494 2.151 2.196 - - -
CU - 1304 Boulder in a lat.-
8.774 -71.033 3755 ter. left moraine 12x1x2 16.009 0.646 0.546 - - -
Boulder in a lat.-
CU - 1305 8.773 -71.036 3701 ter. left moraine 1x1.7x1 17.479 1.096 1.059 - - -
CU - 1306 Boulder in a lat.-
8.773 -71.040 3668 ter. left moraine 22x4x5 17.819 1.993 2.030 - - -
Boulder in a lat.-
CU - 1309 8.766 -71.048 3464 ter. left moraine 23x2x1.6 18.628 1.171 1.135 - - -
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Samples Latitude | Longitude | Elevation | Site information Boulder size Original Modified
Ages Ages
External Internal External Internal
Value . . Value . .
uncertainty | uncertainty uncertainty | uncertainty
°N °W m ka ka
CU - 1310 Boulderin a lgt.-
8.764 -71.045 3516 ter. left moraine 0.6x04x1.2 22.356 2.535 2.638 - - -
CU- 1311 Boulderin a lgt.-
8.764 -71.047 3469 ter. left moraine 0.6x1.6x1.6 17.784 0.780 0.688 - - -
CU- 1312 Boulderin a lgt.-
8.752 -71.051 3403 ter. left moraine 1.6x3x4 18.033 0.811 0.723 - - -
CU- 1313 Boulder in a lgt.-
8.752 -71.051 3424 ter. left moraine 2x3x4 18.495 0.788 0.690 - - -
CU- 1315 Boulder in a lgt.-
8.753 -71.052 3365 ter. left moraine 3x5x7 17.142 0.876 0.808 - - -
Block in a lateral
MUCU -1401 8.773 70.842 3679 moraine (right). 25x1.60x1.4 25.655 1.392 1.369 - - -
Block in a lateral
MUCU-1402 8.774 70.843 3669 moraine (right). 2x0.5x0.80 35.483 1.599 1.591 - - -
Block in a lateral
MUCU-1403 8.774 70.843 3669 moraine (right). 1x0.5x0.81 36.947 1.581 1.568 - - -
Roche moutonée.
MUCUF-1401 8.760 70.836 3603 2nd step. 18.094 0.863 0.786 - - -
Roche
moutonnée. 4th
MUCUF-1402 8.756 70.836 3683 step. 5.777 0.710 0.691 - - -
Roche
moutonnée. 4th
MUCUF-1403 8.755 70.834 3704 step. 18.754 0.752 0.642 - - -
Roche
moutonnée. 1st
MUCUF-1404 8.764 70.838 3554 step. 20.388 1.415 1.402 - - -
Block in a lateral
TAPIAS-1401 8.814 70.774 3097 moraine (right). 0.60 x 0.30 x 0.8 19.634 0919 0.834 - - -
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Samples Latitude |Longitude |Elevation | Site information | Boulder size Original Modified
Ages Ages
External Internal External Internal
Value . . Value . .
uncertainty | uncertainty uncertainty | uncertainty
°N °W m m ka ka
Block in a lateral
TAPIAS-1402 |8.814 70.774 3096 moraine (right). [0.60x1x 1 17.341 1.141 1.104 - - -
Block in a lateral
TAPIAS-1403 8.814 70.774 3096 moraine (right). 0.40 x 0.30 x 0.60 19.561 0.961 0.885 - - -
Block in a lateral
CABA-1401 8.777 70.837 3788 moraine (left) 5x4x4 30.534 1.422 1.390 - - -
Block in a lateral
CABA-1402 8.777 70.837 3778 moraine (left) 1.5x1.80x1 33.155 1.515 1.493 - - -
Block in a lateral
CABA-1403 8.777 70.837 3775 moraine (left) 1.2x0.8x0.8 27.436 1.137 1.038 - - -
Boulder in a
MIF-1401 8.819 -70.863 3740 lateral moraine 3x3x2 17.946 0.954 0.896 - - -
Boulder in a
MIF-1402 8819 | -70863 | 3740 | lateral moraine 19.696 | 1516 1519 - - -
Boulder in a
MIF-1403 8819 | -70863 | 3740 | lateral moraine 17322 | 1.007 0.960 - - -
Block in a lateral
DESE-1401 8.801 -70.844 3556 moraine (left). 17.695 0.983 0.928 - - -
Block in a lateral
DESE-1402 8.800 -70.845 3548 moraine (left). 1.6 x0.4x0.3 17.901 0.732 0.628 - - -
Block in a lateral
DESE-1403 8.802 -70.843 3548 moraine (left). 0.6x0.5x0.5 21.781 3.085 3.325 - - -
PL-1405 8.940 -70.677 2795 Moraine boulder. 2.5x1x040 75.476 3.278 3.318 - - -
PL-1406 8.939 -70.677 2782 Moraine boulder. 0.70 x 0.60 x 0.79 62.856 2.590 2545 - - -
PL-1407 8.939 -70.677 2782 Moraine boulder. 0.70 x 0.60 x 0.80 83.662 3.372 3282 - - -
PL-1408 8.947 -70.665 2684 Moraine boulder. 0.50 x 0.60 x 0.60 50.135 1.967 1.942 - - -
PL-1409 8.947 -70.665 2684 Moraine boulder. 0.30 x 0.40 x 0.49 58.184 2.315 2236 - - -
PL-1410 8.947 -70.665 2684 Moraine boulder. 0.30 x 0.40 x 0.50 45.732 1.802 1796 - - -
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V-2.0 Detailed glacial geomorphological features and deglaciation chronologies

Valleys and results presentation is based on a geographical subdivision (Sierra Nevada:
V-2.1, Sierra del Norte: V-2.2 and Cordillera de Trujillo: V-2.3). In Sierra Nevada,
Mucubaji and Los Zerpa results are gathered in Carcaillet et al. (2013) and in V-2.1.1,
this manuscript. Results are also published in a Spanish article (Angel et al., 2013,
appendix 1). Gavidia valley results are present in a submitted article (Angel et al.,
Journal of South American Earth Sciences, V-2.1.2). Sierra del Norte (La Culata,
Desecho, Pueblo-Llano/La Canoa moraines) and Cordillera de Trujillo will be

submitted in the next months.

V-2.1 Sierra Nevada
V-2.1.1 Mucubaji and Los Zerpa
Well-preserved glacial landforms (moraines and roches moutonnées) along all the
Mucubaji valley extension are present in Figure V-3. This valley was selected to study a
detailed deglaciation history in the Sierra Nevada northern hillside. It was selected
because of its morphological features: accumulation zone orientation (NW-SE) and
abrupt changes of the valley slopes (from ~5-7° to 20°). Los Zerpas moraines allow

dating a glacier advance in the Sierra de Santo Domingo.

Pico Mucufiuque
4760 m

Mucubaji Lake at 3560 m

Figure V-3. Mucubaji post-glacial valley (u-shape) in the Sierra Nevada. At elevations

lower than 3700 m, the landscape is characterized by a well-shape moraine ridge (50 m
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high) (orange lines). At elevations higher than 3700 m landforms are erosional glacial
features as roches moutonnée (modified from original photo of

http://www.mucubaji.com/1 Lagunas.html).

Mucubaji deglaciation history is the best documented in the central MA. Deglaciation
chronology was based on e (Schubert, 1970; Schubert, 1972; Salgado-Laboriau, 1977;
Schubert and Rinaldi, 1987; Mahaney et al., 2005; Carrillo, 2006; Carrillo et al., 2008;
Mahaney et al., 2008). Schubert (1970) and (1972) highly contribute in the
reconstruction of the Mérida Glaciation. Glacier advances in Sierra Nevada, specifically
in Sierra de Santo Domingo (Northside of the Mucubaji pass, 3000-3500 m, towards
Santo Domingo river, Figure V-1) were dated older than 10-13 ka BP. These
chronologies were obtained using radiocarbon dating of carbonaceous sediments and
peat within fluvioglacial deposits. In the Mucubaji valley, moraines located at ~3500 m
were related to the LGM (Salgado-Labouriau et al., 1977). This is based on a minimum
deglaciation age of 12.65+0.13 '*C ka from a basal peat in an outwash terrace up-valley
(3650 m) of the Late Mérida Stadial moraines. Schubert and Rinaldi (1987) date an
outwash fan at 3400 m bounded by two Late Stadial moraines. The outwash fan has a

basal age of 19.08+0.82 "*C ka BP (Schubert and Rinaldi, 1987).

Studies developed in the Mucubaji valley were mainly interpreted in a paleoclimate
sense (e.g. Schubert and Rinaldi, 1987) and deglaciation history was not enough
constrained. Some scientific questions can still be raised: A push moraine was related to
the YD but is it observed a glacier advance during the OtD? How was the detailed
glacier dynamic in this valley since the LGM? (YD, OtD and LGM initially described in
Sections 1-1.3.4 and 1-1.3.3) How is it related to other glacier dynamics in the same
Sierra Nevada or Sierra del Norte? A deglaciation chronology based on "Be exposure
dating compiled with previous studies greatly contributed to answer these scientific

questions.

The deglaciation chronologies proposed by Carcaillet et al. (2013) established a detailed
post-LGM history. Los Zerpa moraines allow studying a glacier advance in Sierra de
Santo Domingo. However, considering the recent SLHL "Be production rate (Kelly et
al., 2013), updated exposure ages were derived (Table V-3). Original exposure ages
from the Mucubaji valley and Los Zerpa moraines increased by ~14 % and some

paleoclimate interpretations changed. In the following, updated exposure ages were
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considered for discussions. Values range from 11.0+0.4 ka to 21.5+1.8 ka in the
Mucubaji valley. Los Zerpas moraines were dated at 14.9+1.1 ka and 16.4+1.6 ka
(Table V-3).
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ABSTRACT

In the tropical Mérida Andes (northwestern Venezuela), glacial landforms were found at altitudes between 2600
and 5000 m, corresponding to 600 km? of ice cover during the maximum glacial extension. However, the lack of
sufficient absolute age data prevents detailed reconstruction of the timing of the last deglaciation. On the north-
western flank of the Mucufiuque Massif, successive moraines and striated eroded basement surfaces were sam-
pled for cosmogenic '°Be investigation. Their compilation with published data allows the establishment of a
detailed chronology of the post-LGM glacier history. The oldest moraines (18.1 and 16.8 ka) correspond to the
Oldest Dryas. Successive moraine ridges indicate stops in the overall retreat between the LGM and the Younger
Dryas. The cold and short Older Dryas stadial has been identified. Results indicate that most of the ice withdrew
during the Pleistocene. The dataset supports an intensification of the vertical retreat rate from ~25 m/ka during
the late Pleistocene to ~310 m/ka during the Pleistocene/Holocene. Afterwards, the glacier was confined and
located in the higher altitude zones. The altitude difference of the Younger Dryas moraines in the Mucubaj,
La Victoria and Los Zerpa valleys indicates a strong effect of valley orientation on the altitude of moraine
development.

© 2013 University of Washington. Published by Elsevier Inc. All rights reserved.

Introduction

Deciphering the late Pleistocene glacier activity in tropical moun-
tains greatly contributes to the understanding of global climate changes.
Only a few mountain ranges have sufficient elevation and precipitation
to allow glacier formation in the tropics. The Mérida Andes of Venezuela
(Fig. 1A) is a key place because numerous landforms of post-LGM (last
glacial maximum) glacier activity have been observed since the 19th
century (Sievers, 1885). Jahn (1912, 1925) produced planimetric mea-
surements of glaciers and published the first glacier mapping at the
scale of the Mérida Andes. It was established that two moraine levels
existed, located at 2600-2800 and 2900-3500 m asl (Schubert, 1970,
1974; Schubert and Valastro, 1974; Schubert and Rinaldi, 1987;
Schubert and Clapperton, 1990), and associated with the last glacia-
tions. Glacier surveys indicated that ice covered most of the relief
during the LGM, which has been locally named the Mérida Glaciation
(Schubert, 1974). Since this eponymous glaciation, the glaciers of the
Mérida Andes retreated from ~600 km? to ~2.9 km? in 1952, and then
to 0.26 km? in 2009 (Schubert, 1980, 1998; Schubert and Vivas, 1993;
Yépez and Carrillo, 2009; Kalm and Mahaney, 2011). During the

* Corresponding author at: ISTerre, 1381 rue de la Piscine, 38400 Saint Martin d'Héres,
France. Fax: +33 476 63 52 52.
E-mail address: Julien.Carcaillet@ujf-grenoble.fr (J. Carcaillet).

LGM, the Equilibrium Line Altitudes (ELA) were between 3920 and
3320 m asl. Nowadays, the present ELA is estimated between 4880
and 4470 m asl (Stansell et al., 2007) with a present-day retreat rate
estimated at 30 m?/yr (Carrillo and Yépez, 2008). Consequently, the
ultimate glaciers are located around the main summits of the cordillera
(i.e., Bolivar, Humboldt and Bonpland peaks; Schubert, 1998).

Several scattered data based on radiocarbon (Schubert, 1970; Abbott
etal, 2003; Stansell et al., 2005), OSL (Mahaney et al., 2000), cosmogen-
ic (Wesnousky et al., 2012) and palynological (Salgado-Labouriau,
1989; Salgado-Labouriau et al., 1992; Rull et al,, 2005) investigations
delineated the glacier evolution since the LGM. However, the data are
too sparse to allow the construction of a robust and complete chronolo-
gy of the glacier extension since the LGM. A critical need for dating still
exists in order to better constrain both the timing of the LGM and sub-
sequent glacier retreat. We present a compilation of 29 published ages
and 16 new Terrestrial Cosmogenic Nuclide (TCN) dates attained in
the same area (i.e., the north flank of the Mucufiuque massif Figs. 1A
and B). The dataset allows the establishment of the pattern of the degla-
ciation in the central zone of the Mérida Andes. We selected this area
because glacial landforms are particularly well-preserved along a verti-
cal transect ranging between ~3100 and ~4200 m asl. This timing is
important because the glacial chronologies in the intertropical belt are
rare and need to be clarified. The established chronology is discussed
herein with respect to local, regional and global paleoclimatic records.
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Figure 1. A) Digital shaded-relief map of the central Mérida Andes. The white box indicates the study area (map modified from Garrity et al., 2004). B) Aerial photograph of the study area.
Dashed gray boxes indicate Figs. 2A and B; the white line indicates the Boconé fault and names refer to the text. White star indicates the Wesnousky et al. (2012) sampling sites on the La

Victoria Moraine (see text for details).

Geological and geomorphic setting

The Mérida cordillera is located in the west of Venezuela (Fig. 1A)
and appears to be a northern extension of the Northern Andes cordillera
in Colombia. Trending ~N45°, the cordillera extends over 400 km and
reaches a maximum elevation of ~5000 m asl. in the Sierra Nevada
of Mérida (Pico Bolivar). Its formation is strongly connected to the
geodynamic interaction of the Panama Arc, the Caribbean and the
South American plates, which started during the Miocene (Audemard
and Audemard, 2002) and is being exhumed at rates estimated between
0.2 and 0.6 km/Ma (Bermudez et al., 2010). At present, tectonic defor-
mation is mainly accommodated by the Boconé fault which is the
most active structure of the area (total length ~500 km) and which

strongly controls the topography of the axis of the Venezuelan Andes
(Rod, 1956; Schubert, 1982; Audemard et al., 2008).

We focus our study on the western termination of the “Sierra de
Santo Domingo” (Fig. 1B). The Santo Domingo valley, running parallel
to the cordillera, is a wide valley along the Bocon6 fault. We sampled
glacier morphologies in the Mucufiuque massif, in the U-shaped
Mucubaji Valley and the moraine complex of Los Zerpa. Samples consist
of Precambrian to Palaeogene granites and gneiss.

The Los Zerpa moraines (Fig. 2A) are located ~4 km to the east of the
Laguna de Mucubaji. Their shape is particularly well-preserved with
>1 km long lateral moraines and a frontal moraine (~3120 m asl)
shifted by dextral strike-slip movement of the Bocono fault (Schubert
and Sifontes, 1970). The shift of ~70 m suggests an average slip rate
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Figure 2. Enlarged aerial photographs of the two studied valleys (A — Los Zerpa and B — Mucubaji). Levels refer to the text. Fault scarps, glacial and paraglacial landforms are represented

(see caption for details). C, D, E) photographs of sampled boulders and striated bedrocks. White stars indicate Wesnousky et al. (2012) sampling sites on the La Victoria Moraine (see text
for details).
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between 0.55 (Wesnousky et al.,, 2012) to 1 cm/yr (Audemard, 1997;
Audemard et al., 1999). Note that a paleo-outlet cut the frontal moraine
but was abandoned because of the tectonic displacements. At ~1.5 km
to the west, the La Victoria latero-frontal moraines have also been
shifted by the Boconé fault (Fig. 1B). Lateral moraines are well devel-
oped between the Laguna Negra (3470 m asl) and the Laguna Victoria
(3220 m asl). We have not sampled boulders along this moraine, but
the dates published by Wesnousky et al. (2012) are presented in
Table 2.

The Mucubaji Valley (Fig. 2B) is a NNW-SSE oriented valley and is
bordered by the Laguna de Mucubaji (3540 m asl) formed by a moraine
dam that was apparently created during the ultimate ice advance of
the Mérida glaciations (i.e., LGM) (Dirszowsky et al., 2005; Rull, 2005;
Stansell et al,, 2005) and the Pico Mucufiuque (4670 m asl). The valley
presents a U-shaped postglacial morphology with a complex cirque sys-
tem near the headwall. The valley profile shows two distinct zones:

- A nearly flat lower sector (3550/3700 m asl) formed by paraglacial
sediments (mainly till) overlain by coarser fluvio-lacustrine (clay
to gravel) and Holocene peat/lacustrine deposits (Stansell et al.,
2005; Carrillo et al., 2006). We identified five main recessional
moraines abandoned during successive phases of glacier retreat.
With an apparent height of ~50 m, the lower moraine is the biggest
of the area and is skewed to the north in the Santo Domingo valley to
a minimum altitude of 3400 m asl. The moraines located above are
well-shaped arched ridges with apparent heights lower than 5 m.
However, the one located immediately above the lake reveals that
the minimum height is actually ~15 m. Indeed, the filling by super-
ficial materials of the depressions located behind the moraines con-
tributes to reducing the overall apparent height of the moraines. The
area is faulted by the Boconé fault system (Fig. 2B). This zone has
been slid over the crystal basement toward the north forming a 6
to 8 meter high scarp (Audemard et al., 2010).

- An arched upper sector (3700/4600 m asl) formed by the Iglesias
group (Bellizzia et al., 1976; Gonzales de Juane et al., 1980) that is
composed of Precambrian high-grade metamorphic rocks, banded
gneiss, amphibolites, schist and granitic dikes (Schubert, 1970).
Above 3700 m asl, the glacial landforms are mainly striated bed-
rocks (roches moutonnées) easily identifiable in the topography by
the presence of bedrock bars cutting the valley. This area comprises
a diamict (till) succession related to earlier phases of the late glacial
period followed by the Younger Dryas advance (Mahaney et al.,
2008). The whole forms a characteristic concave valley profile with
~20° of maximum slope.

Methods: Sampling strategy, chemical preparation and
data treatment

In the Mucubaji Valley, we identified 11 distinct levels with large
boulders (>1 m) entrapped in moraine crest lines (Figs. 2C, D) and
striated bedrock surfaces (roches moutonnées) suitable for cosmogenic
investigation (Fig. 2E). We particularly focused attention on the sam-
pling of materials that were sufficiently elevated, in order to minimize
the potential coverage by superficial deposits, and well-anchored to
avoid any post-deposition movements. As these rocks have high quartz
content, we extracted the TCN in-situ produced beryllium-10 (*°Be).

Chemical targets were prepared at the cosmogenic laboratory
at ISTerre following procedures adapted from Brown et al. (1991) and
Merchel and Herpers (1999). Measurements were carried out at
the French National AMS facility (Accelerator Mass Spectrometry) at
ASTER in Aix-en-Provence. Ages were calculated using the online
Cronus calculator (Balco et al, 2008). Because of the lack of pro-
duction rate calibration sites in the tropical belt, the ages have been
computed using a global averaged reference production rate of 4.39 +
0.37 atoms g~! yr! (Sea-Level High-Latitude SLHL). This production
rate is higher (~15%) than those calculated by Putnam et al. (2010) in

New Zealand (3.74 + 0.08 atoms ¢! yr™!) and Kaplan et al. (2011) in
Patagonia (3.71 £ 0.11 atoms g~' yr™!). The data can be affected by
the inherent uncertainty associated with a difference between the aver-
aged and accurate local production rates. The choice falls on this pro-
duction rate because the Putman et al. (2010) and the Kaplan et al.
(2011) production rates are scaled for mid- and high-latitude zones,
and the magnetic modulation has a particularly critical effect in the vi-
cinity of the magnetic equator where the deflection of primary cosmic
ray is at maximum (see Dunai, 2010).

For all these reasons, we used the averaged production rate using the
time-dependent scaling scheme of Lal (1991) modified by Stone (2000)
in order to take the geomagnetic field variation into account (Balco
et al., 2008). Since the reference production rate coupled with the
Lal/Stone scaling scheme is lower than the others proposed in the
Cronus Calculator (see Balco et al., 2008 for details), the exposure ages
calculated using this scheme yield a maximum difference ranging from
8 to 15%. Dates are thus given in °Be-ka (Table 1) in order to allow
straightforward correction for future refinements in scaling schemes
and production rate computation.

Results of 1°Be measurements

Dating of 11 meter-size moraine blocks (mainly <3650 m asl) and 5
striated bedrock surfaces (>3650 m asl) was performed to provide a
chronology of the last deglaciation. Table 1 presents sample informa-
tion, scaling factor, production rates, concentrations deduced from
AMS measurements and exposure ages computed with the online
version of Cronus calculator (Balco et al,, 2008). The preservation of stri-
ations on polished surfaces and the absence of significant exfoliation on
moraine boulders support the absence, or extremely low rate, of erosion
of rock surfaces. Nonetheless, because this is only established from field
observations, it is important to consider the TCN age interpretations as
the estimated minimum. Furthermore, lateral moraines are more than
100 m above the valley floor. This indicates a minimum 100 m thick-
ness of the ice tongue, which is sufficient to avoid TCN production in
the underlying bedrock during the last climatic cycle and on abraded
rock surfaces for resetting TCN inherited from previous glacial stages.
We thus consider that samples are free of inherited '°Be. The presented
chronology can reasonably reflect the last glacial retreat history
(Table 1).

Results from the Mucubaji Valley range between 3.01 4 0.10
(Mu09-13) and 5.22 + 0.42 (Mu09-02) 10° atoms per gram of quartz
(atoms g™'). Once computed as exposure ages, results range between
18.14 + 2.11 and 9.08 + 0.82 '°Be-ka (Table 1, Fig. 3A), which is com-
patible with the absence or moderate inheritance. Indeed, the results
show a post-LGM distribution and an altitudinal dependence of expo-
sure ages. In the flat lower valley (Level 1 to Level 5, Fig. 2B), sampled
glacial landforms date from 18.14 + 2.10 to 13.27 + 1.20 '°Be-ka.
Because all sampled sites are recessional moraines, the deduced age
distribution can be considered as successive stages of glacier stop during
an overall global withdrawal from the LGM to the late Pleistocene.

However, the exposure ages of Mu09-04 (13.27 4 1.20 '°Be-ka)
and Mu09-05 (13.32 + 1.48 '°Be-ka) are abnormally young with re-
spect to the neighboring samples (Fig. 2 and Table 1). Given the associ-
ated uncertainties, their exposure ages agree with the general
chronology of the glacial retreat. Upstream of Level 5, a macrofossil col-
lected at ~50 cm from the base of the sediment was dated at 15.73 +
0.20 cal ka BP (CAMS-104915, Table 2) which correlates with exposure
ages of Level 5 moraine boulders (13.32 4+ 1.48 [Mu09-05] and
1596 + 1.80 '°Be-ka [Mu09-06]). In the following, we establish a
composite Level 4/5 by combination of ages of Mu09-04, -05, -06 and
CAMS-104915 because the age distribution falls into the same time in-
terval and, according to their respective uncertainties, are impossible
to distinguish.

Above 3700 m (Level 6 to Level 11, Fig. 2), the slope drastically
steepens up to 20% and increases the elevation to 4670 m asl.



Table 1

TCN results of the Mucubaji valley and the Los Zerpa moraines. (a) The topographic scaling factor has been calculated following the method of Dunne et al. (1999). (b) AMS analyses have been carried out at the French AMS facility ASTER. Beryllium 10
concentrations were calibrated against NIST Standard Reference Material 4325 using its certified '°Be/°Be ratio of 2.79 10~ !" and a '°Be half life of 1.387 + 0.012 10° yr (Korschinek et al., 2009; Chmeleff et al.,, 2010). Results have been corrected from
the chemical blank ('°Be / *Bepjank = 2.30 + 0.85 x 10~ '%). Propagated uncertainties include counting statistics, a conservative estimate of 1% for instrumental variability, the uncertainty of the standard deviation and chemical blank. (c) Ages have
been computed with the Cronus Calculator (Balco et al., 2008) using the time-dependent production rate of Lal (1991) modified by Stone (2000). (d) Internal uncertainties consider the analytical uncertainties, while the external uncertainties include
6% uncertainty in the production rate and 8% uncertainty in the '°Be decay constant. In the Results section, results are presented with the external uncertainties. No correction for snow or other coverage have been taken into account, the sample
thickness correction has been calculated with a 2.7 density factor.

Sample Level Latitude Longitude Elevation Site information Sample informations Thickness  Shielding factor®  Scaled production 19Be concentration®™®  Ages© 9
rates
Spallation  Muons  Value Uncertainty ~ Value External Internal
uncertainty  Uncertainty
°N ‘W m asl Apparent size cm atoms/g/yr x10° atoms/gQtz/yr ka
(length * width * height)

LZ09-01 - 8.8117 70.7884 3127 Frontal moraines crest Boulder (4.2 « 2.7 « 1) 3 0.980 20.35 0471 30142 2795 13.837 1.740 1352
1LZ09-02 - 8.8117 70.7874 3113 Frontal moraines crest Boulder (3.7 2 = 2.3) 3 0.981 20.22 0.469 270.19 1941 12481 1.386 0.944
Mu09-01 2 8.8009 70.8279 3620 Left side frontal moraines crest ~ Boulder (7 = 4.5 + 4) 4 0.986 26.16 0.535 47712 16.54 16.784 1.536 0.625
Mu09-02 1 8.7954 70.8343 3589 Frontal moraines crest Boulder (1.6 = 1.2 « 0.9) 3 0.999 26.32 0.533 52240 4155 18.144 2112 1.563
Mu09-03 3 8.7951 70.8270 3572 Frontal moraines crest Boulder (1.7 « 1.5 « 0.7) 3 0.999 26.08 0.531 440.60 28.60 15661 1.673 1.084
Mu09-04 4 8.7874 70.8233 3607 Frontal moraines crest Boulder (1.3 + 1 « 0.8) 4 0.996 26.25 0.533 37293 1146 13273 1.195 0.431
Mu09-05 5 8.7850 70.8229 3615 Frontal moraines crest Boulder (3.5 * 1.5 « 1.2) 4 0.995 26.33 0.535 37545 27.10 13321 1483 1.016
Mu09-06 5 8.7852 70.8224 3620 Frontal moraines crest Boulder (1.4 = 1.3 « 0.8) 2 0.995 26.86 0.541 463.22 3448 15957 1.801 1.269
Mu09-07 6 8.7790 70.8197 3697 Striated bedrock valley axis 3 0.907 25.20 0.549 374.12 16.53 13.841 1.322 0.647
Mu09-08 6 8.7785 70.8189 3727 Striated bedrock valley axis ~2 m high 3 0.951 26.82 0.553 408.50 16.71 14201 1335 0.615
Mu09-10 10 8.7667 70.8129 4067 Striated bedrock valley axis ~2 m high 4 0.941 30.94 0.601 306.04 9.55 9.078 0818 0.304
Mu09-11 11 8.7633 70.8119 4213 Moraine boulder Boulder (2 + 1.5« 1) 3 0.819 29.03 0.627 33455 10.27 10.629 0.956 0.348
Mu09-12 10’ 8.7659 70.8121 4091 Striated bedrock valley axis 3 0.941 31.55 0.608 32442 26.38 9483 1.113 0.825
Mu09-13 9 8.7689 70.8164 3982 Moraine valley axis Boulder (3 * 2 = 1.5) 3 0.897 28.58 0.591 301.52 9.74 9.732  0.881 0.336
Mu09-14 8 8.7719 70.8152 3862 Moraine valley axis Boulder (1.5 = 1.5 % 1.5) 3 0.945 28.44 0.573 305.27 2476 9925 1.164 0.858
Mu09-15 7 8.7758 70.8161 3804 Striated bedrock valley axis 3 0.968 28.32 0.564 39044 34.08 12.864 1.566 1.188
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Figure 3. TCN results versus elevation in the Mucubaji valley (A) and, Los Zerpa and La Vi
sector in the Mucubaji valley. Black dots and triangles are TCN dating of boulders moraine:

ctoria frontal moraines (B). Dotted horizontal line separates the flat lower sector from the steep
s and striated bedrock respectively (this study ), white diamonds are published data (see Table 2

for details), gray diamonds are recomputed TCN data of Wesnousky et al. (2012) with a time dependant production rate (see Results section, Tables 1 and 2 for details). Dotted box
represents weighted average ages, in black the present study and in gray the recomputed TCN data (Wesnousky et al., 2012). Inserts B; and B, are individual probability distributions

of exposure ages before (B;) and after (B,) computation of data published by Wesnousky
are data of the present study. Black curves are the sum of the individual probabilities.

Surprisingly, the age distribution is comparatively narrow with respect
to the lower sector and ranges between 14.20 + 1.33 and 9.08 + 0.82
10Be-ka. TCN ages decrease with elevation except for the highest eleva-
tion sample, which is abnormally old with respect to the others (Mu09-
11,10.63 & 0.96 '°Be-ka). The sample can be regarded as an outlier due
to probably inherited '°Be content produced from previous exposure
before its abandonment or partial ice shielding due to low ice cover
thickness. Since the area has been affected by mass wasting, the sam-
pled boulder could have been deposited by gravitational collapse after
a pre-exposure on the scarp. Because some sampled landforms are
striated bedrock, no information permits the determination of glacier
advances or retreats. We thus propose to combine Mu09-10 (9.08 +

etal. (2012). Light gray curves are data published by Wesnousky et al. (2012); dark gray curves

0.82 '°Be-ka) and Mu09-12 (9.48 + 1.11 °Be-ka) and consider the
weighted average ages (WA 9.22 + 0.66 '°Be-ka) as the ultimate chro-
nological marker of the glacier retreat. The established chronology
agrees with a rapid retreat of the glacier tongue during the Pleisto-
cene/Holocene transition.

Samples of the Los Zerpa moraines have been collected from meter-
scale boulders located on the frontal moraine on either side of the
paleo-outlet. TCN results (LZ09-01 and LZ09-02) are lower than those
measured in the Mucubaji valley but the concentrations are con-
sistent (3.01 & 0.28 and 2.70 £ 0.19 - 10° at-g-qtz, WA 2.80 +
0.16 - 10° at-g-qtz). Once computed as exposure ages, samples
LZ09-01 and LZ09-02 provide ages of 13.84 + 1.74 and 12.48 + 1.39



Table 2
Published chronological data of the Mesa del Caballo, Mucubaji valley and La Victoria/Los Zerpa Moraines. (a) Values with * are estimated, (b) '“C dates are calibrated ('*C cal ka BP) or uncalibrated (“C ka BP), (c) TCN dating of Wesnousky et al.
(2012) computed using the time-invariant production model, and (d) TCN ages that have been recalculated using the time-dependent production rate (See Discussion section for detail).

Sample Latitude ®  Longitude ¥ Elevation ® Sample informations Ages®™ 9 Reference Modified ages®
Methods Value Uncertainty  Uncertainty Value Uncertainty
- +
°N ‘W m asl ka ka
Ped 5 8.78* 70.84* 3500* ~1 m from the base of the deposits — Mesa del Caballo  '“C ka >59.8 0 0 Dirszowsky et al. (2005)
Ped 5 8.78* 70.84* 3500* ~1 m from the base of the deposits — Mesa del Caballo  '/C ka >60.72 0 0 Dirszowsky et al. (2005)
CAMS-139847 8.78* 70.84* 3500* Peat layer — Mesa del Caballo 1C ka >50.2 0 0 Wesnousky et al. (2012)
Ped 5-3 111 8.78* 70.84* 3500* Peat layer — Mesa del Caballo 14C ka 47.84 0.88 0.88 Mahaney et al. (2001)
Ped 5-3 IV 8.78* 70.84* 3500* Peat layer — Mesa del Caballo 1C ka 53.14 1.16 1.16 Mahaney et al. (2001)
Ped 5-3 VI 8.78* 70.84* 3500 Peat layer — Mesa del Caballo 14C ka 60.24 2.84 2.84 Mahaney et al. (2001)
Ped 5-3 VII Top 8.78* 70.84* 3500* Peat layer — Mesa del Caballo 1C ka 58.35 2.79 2.79 Mahaney et al. (2001)
Ped 5-3 VIl Middle  8.78* 70.84* 3500* Peat layer — Mesa del Caballo 14C ka >64.64 0 0 Mahaney et al. (2001)
Ped 5-3 VI Bottom  8.78* 70.84* 3500 Peat layer — Mesa del Caballo 14C ka >63.48 0 0 Mahaney et al. (2001)
Ped 5-3 VII Top 8.78* 70.84* 3500* Peat layer — Mesa del Caballo 1C ka 56.94 2.26 2.26 Mahaney et al. (2001)
PED 5 8.78* 70.84* 3500* Peat layer — Mesa del Caballo 14C (cal ka BP) 22.75-19.96 1.04-0.27 1.14-0.28 Schubert and Rinaldi (1987)
0 8.78* 70.84* 3500* Peat layer — Mesa del Caballo 4C (cal ka BP) 19.08 0.82 0.82 Schubert and Rinaldi (1987)
0 8.78* 70.84* 3500* Peat layer — Mesa del Caballo 14C (cal ka BP) 16.5 0.29 0.29 Schubert and Rinaldi (1987)
MUCL0202 8.80* 7.83* 3540 Lake sediment 14C (cal ka BP) 15.87 0.65 0.56 Carrillo et al. (2008)
CAMS-104915 8.784 70.82 3615 Peat bog — Aquatic macrofossils 14C (cal ka BP) 15.73 0.207 0.195 Stansell et al. (2005)
0 8.78* 70.82* 3650 Sediment Mucubaji terrasse 14C (cal ka BP) 14.88 0.25 0.25 Salgado-Labouriau et al. (1977)
0 8.78* 70.82* 3650 Sediment Mucubaji terrasse 14C (cal ka BP) 13.83 0.1 0.1 Salgado-Labouriau et al. (1977)
MUM 7B 8.77* 70.81* 3800* organic alluvium 14C (cal ka BP) 1329 022 0.19 Mahaney et al. (2008)
MUM 7B 8.77* 70.81* 3800* Peat 14C (cal ka BP) 13.64 0.14 0.22 Mahaney et al. (2008)
MUM 7B 8.77* 70.81* 3800* Peat 14C (cal ka BP)  13.66 0.44 0.36 Mahaney et al. (2008)
CAMS-104914 8.784 70.82 3615 Peat bog 14C (cal ka BP) 628 0.063 0.021 Stansell et al. (2005)
VEN 19 8.8141 70.8006 3255 Gneiss boulder la Victoria Moraine 10Be 18.6 4.1 4.1 Wesnousky et al. (2012) 158 34
VEN 20 8.81.42 70.8006 3258 Gneiss boulder la Victoria Moraine 10e 16.9 1.8 1.8 Wesnousky et al. (2012) 144 15
VEN 21 8.8142 70.801 3260 Gneiss boulder la Victoria Moraine 10ge 153 15 1.5 Wesnousky et al. (2012) 131 1.2
VEN 23 8.8139 70.7993 3243 Metagranite boulder la Victoria moraine 10Be 15.1 14 14 Wesnousky et al. (2012) 130 12
VEN 25 8.8121 70.7881 3115 Gneiss boulder Los Zerpa 10e 17.7 2.1 2.1 Wesnousky et al. (2012) 152 1.7
VEN 26 8.812 70.7873 3104 Gneiss boulder Los Zerpa 10ge 15 2 2 Wesnousky et al. (2012) 129 17
VEN 27 8.8117 70.7875 3105 Gneiss boulder Los Zerpa 10ge 17.8 1.6 1.6 Wesnousky et al. (2012) 151 14
VEN 28 8.8118 70.7873 3106 Gneiss boulder Los Zerpa 10Be 16.9 1.7 1.7 Wesnousky et al. (2012) 146 14
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Figure 4. Correlations of altitudinal location of the glacier front since the LGM (A) and global (B), regional (C) and local (D) paleoclimatic proxy records. (A) Synthetic evolution of the
ice retreat in Mucubaji valley. Black dots (moraine samples) and white triangle (striated bedrock samples) are weighted average ages deduced from TCN dating (this study) except for
Level 4/5 which includes published data (the weighted averages have been calculated with internal uncertainties because of the proximity of the sampling sites for each level). Gray
dots are WA deduced from published data (see Table 2 for details). Question marks indicate time periods of possible glacier reactivation not confirmed in this present study. N is the num-
ber of data used for the WA calculation. The * refers to the thickness (~100 m) of the moraine Level 2. Inserts are individual exposure age probability distributions of level (light gray curves
are published data, dark gray curves are data of the present study, black curves are the sum of the individual probabilities). Dashed gray line represents the time period of sedimentation of
the Laguna de Mucubaji (Carrillo et al., 2008). Gray bands localize characteristic cold periods based on GISP2 curves. YD: Younger Dryas, OD: Older Dryas and OtD: Oldest Dryas (B) GISP2
5180 values (%) (Stuiver etal., 1995). (C) Sea Surface Temperature (SST) deduced from Mg/Ca sediment record of the Cariaco Basin (Lea et al., 2003). (D) Noticeable climatic episodes since
the LGM in the Mérida Andes deduced from palynological investigations (after Rull, 1999).

10Be-ka, respectively (Table 1, Fig. 3B). These reliable ages indicate that
the boulders have the same exposure history despite the fact that the
LZ09-02 and LZ09-01 boulders emerge by ~2 m and ~1 m above the

surface of the moraine. This indicates a similar and consequently contin-
uous exposure since the moraine abandonment and a moderate abra-
sion of the moraine ridge.
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Figure 5. Timeline of the deglaciation in the Mucubaji valley. The white cover indicate the glacier extent deduced from the present study, the gray cover indicate the presumed glacier
location in the Mesa del Caballo deduced from field work and dating correlations, dashed arrows are the paraglacial outwash sediments.

However, dating of the Los Zerpa moraines shows significant dis-
crepancies between the present data (13.84 £ 1.74 and 12.48 & 1.39
10Be-ka, WA 13.0 + 1.1 ka) and those (Table 2, WA 16.9 + 1.3 ka for
los Zerpa and 16.5 4 1.6 ka for La Victoria) published by Wesnousky
et al. (2012) (Fig. 3B1). Disparity can be justified by either a small but
significant erosion or partial coverage of the sampled boulder. The boul-
ders collected for the current study and by Wesnousky et al. (2012)
were separated by less than 100 m, implying that the potential erosion
would have affected all sampled boulders. During sampling, we

carefully applied a sampling strategy similar to the one of Wesnousky
et al. (2012), taking care to sample boulders well-anchored in the mo-
raine and sufficiently high (>1 m) above the moraine to reduce superfi-
cial coverage. The age differences result only from the choice of the
scaling scheme used in the Cronus calculator. We used the time-
dependent production rate of Lal (1991) modified by Stone (2000),
while Wesnousky et al. (2012) chose the time-invariant production
rate, i.e. with no geomagnetic modulation of the production rate (see
details in the Methods section and in Balco et al., 2008). Once computed
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with the time-dependent production rate, the Wesnousky et al. (2012)
results (WA 14.5 4 0.8 ka [Los Zerpa] and 13.5 + 0.7 [La Victoria])
agree with those of the present study (Fig. 3B). Wesnousky et al.
(2012) associated the abandonment of the Los Zerpa and La Victoria re-
cessional moraines as a small late glacial advance after the LGM. With
this recomputation, the whole dataset of La Victoria and the Los Zerpa
moraines are consistent (Fig. 3B). These ages are compatible with sedi-
mentological information of the paleo-lake formed behind the Los Zerpa
frontal moraines, where organic material was radiocarbon dated at
~9.5 cal ka BP (Carrillo et al., 2006).

Discussion

Compilation of TCN results (Table 1) with published data (Table 2)
allows the deciphering of the Pleistocene-early Holocene glacier activi-
ty in the Mucubaji area (Fig. 4). The early Mérida glaciations have been
identified by dating of paraglacial materials in the Mesa del Caballo
(Schubert, 1974; Dirszowsky et al., 2005; Rull, 2005). The Mesa del
Caballo (Fig. 1B) is a fan complex resulting from the damming of the
drainage following the shift of the Bocon6 fault. The sedimentary depos-
it is mainly composed of ~40 m of tills interbedded with lacustrine and
soil horizons. Mixed proglacial sediments increase in the upper layers
(see sedimentary description in Dirszowsky et al., 2005). The lowermost
soil layers, located ~1 m from the base of the sedimentary column,
were dated at ~60 ka (Mahaney et al., 2001; Dirszowsky et al., 2005;
Wesnousky et al,, 2012) but were subsequently determined to likely
correspond to Dansgaard/Oeschger event 19 (67-70 ka) and called
the “Pedregal interstade” (Dirszowsky et al., 2005).

The most noticeable glacial landforms are the well-preserved lateral
moraines of several hundreds of meters in length and up to 150 m high.
They were formed by paleo-glaciers that flowed in NW-SE to N-S direc-
tions in El Caballo and Mucubaji valleys (Fig. 1B). These moraine com-
plexes were attributed to the ultimate LGM advance (Schubert, 1974),
as suggested by the associated fluvio-glacial sediments deposited on
the Mesa del Caballo and dated between 22.75 to 19.66 cal ka BP
(Schubert and Rinaldi, 1987; Rull, 1998). In the Mucubaji valley, the dis-
tal moraine complexes are two latero-frontal moraines developed down-
stream of the Laguna de Mucubaji (Levels 1 and 2, Fig. 2B). The two
moraine ridges were dated at 18.14 + 2.11 and 16.78 + 1.54 '°Be-ka,
respectively. Furthermore, Carrillo et al. (2008) demonstrated the
initiation of sedimentation at about 15.9 ka in the lake dammed by
the Level 2 moraine (Fig. 2B, Table 2). This agrees with the TCN ages of
Levels 1 and 2. The lowermost moraine (Level 1, 18.1 & 2.1 '°Be-ka)
corresponds to the maximum glacier extent of the LGM (Fig. 5A). The
upper moraine (Level 2, 16.8 + 1.5 1°Be-ka) is the largest recessional
moraine preserved in the area and was developed during the so-called
Oldest Dryas or locally named the “El Caballo Stadial” stage (Figs. 4D
and 5B). The Level 2 moraine presumably caused the break of sedimen-
tation in the Mesa del Caballo, which is indicated by the radiocarbon dat-
ing of organic material entrapped in the upper sedimentary layer and
dated at 16.5 cal ka BP (Schubert and Rinaldi, 1987).

Furthermore, high amounts of coarse materials have been observed
at the base of the lake sediment (Carrillo et al., 2008). Even if this layer
has been interpreted as a seismo-turbidite, the existence of sand mate-
rial is compatible with a long lasting presence of a glacier front in the
vicinity of the lake and the presumable transitional calving glacier
configuration feeding the sediments with outwash material trapped in
the ice. Since the lake is surrounded by the Levels 2 and 3 moraines
(Fig. 2B), the time lag (~1 ka) corresponds to the required time for
melting the glacier on a surface equivalent to the lake. In this context,
the melting rate was thus ~0.3 km?/ka.

Whereas several authors proposed a late end of the LGM before 13 ka
(Rull, 1996; Dirszowsky et al., 2005), we identified 3 recessional frontal
moraines (Levels 3 to 5) and 2 striated bedrock units (Levels 6 and 7)
dated from 15.6 to 12.9 ka. The landforms defined the glacier front dur-
ing successive step between the Oldest Dryas and the Younger Dryas

Table 3

Mean annual temperature, precipitation and evaporation survey (Venezuelan National Meteorological Institute, http://www.inameh.gob.ve/) of meteorological stations on both sides of the Mucubaji pass (i.e. Santo Domingo valley, North and

Mucuchies valley, South). The periods of survey are noticed. The mean annual values have only been computed for complete years; the number of considered years are noted.

Ratio precipitation/

Number of
evaporation

years

Period of
survey

Mean

Number
of years

Period of
survey

Period Number  Mean
of years

Mean

Distance from the

Longitude ¥  Elevation (¥

Latitude
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evaporation

precipitation

of survey

temperature

Laguna de Mucibaji

mm/yr
1172

mm/yr
1277
1017

km

16

m asl
2100
3000
3600
3000
2400

1.09
1.17
1.02

5
14
14

1979/1983
1970/1983
1970/1983

23

1965/1995
1970/1995
1969/1995

3
7

11

1980/1983
1971/1983
1970/1983

15.6

70.67

8.87
8.82

Santo Domingo
Los Plantios
Mucubaji

872

8.1

70.78

907

24
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6.0
114

70.82

8.80
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1950/1983
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1951/1976
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20
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8.77 70.9
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Tabay

0.59

27
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8.71

8.64
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boundary (Figs. 5B, C, D, and E). With Levels 2 to 5 being formed by fron-
tal moraines, the glacier retreat appears to have been at least interrupted
or even temporarily reversed by significant glacier readvances. The
glacier activity matches the rise of temperature in the Mérida Andes
from — 7 to —3°C compared with the present day (Fig. 4D) and of sea-
surface temperature (SST) from 24 to 27°C (Fig. 4C). Exposure ages of
striated bedrocks assigned to Level 6 (Table 1) point the timing of the
ice front during the sharp and cold Older Dryas period (Fig. 5D). This is
also evidenced in Los Anteojos lake sediments (Mérida Andes) by high
titanium and clastic contents, as well as by low biogenic silica concen-
tration between 14.1 and 13.9 ka (Stansell et al., 2010). This temperature
drop is also significant in GISP2 and SST records (Figs. 4B and C).

Peat samples covered by glaciofluvial materials (till and outwash)
collected 150 m up-valley from a small push moraine (site MUM7B,
3800 m asl) have been dated at 13.29 + 0.22, 13.64 4+ 0.15 and
13.66 + 0.44 cal ka BP (Mahaney et al., 2008 and Table 2) and indicate
the maximum ages of glaciofluvial deposits. Mahaney et al. (2008)
“approximately” associated them with the Younger Dryas (Mahaney
et al., 2008 and Fig. 5E). These ages agree with TCN dating of a striated
surfaces collected at ~3800 m asl (Level 7, 12.9 4+ 1.6 '°Be-ka) and
are compatible with the presence of fluvio-glacial terrace deposits at
~3650 m asl dated at 14.88 + 0.25 and 13.83 + 0.1 cal ka BP (WA
14 + 0.1 ka; Table 2, Salgado-Labouriau et al., 1977). The location
of landforms in relation to each other and the absence of erosion/
deformational features in downvalley terraces indicate the occurrence
of a glacier re-advance, which appears to be the last significant advance
of the Pleistocene (Salgado-Labouriau et al, 1977, Mahaney et al.,
2007a,b). Ages can be related to the Younger Dryas Boundary (YDB)
identified at 12.9/12.5 ka in several places of the Central/South America,
such as in Mexico (Israde-Alcantara et al., 2012), Colombia (van't Veer
et al., 2000), Peru (Seltzer et al., 2002), Bolivia (Sylvestre et al., 1999;
Blard et al,, 2011), Patagonia (Heusser, 1993; Glasser et al., 2012) and
also in the Cariaco basin sediments (Fig. 4C). In Venezuela, some limno-
logical evidence attests to the existence of a significant dry period after
~13.4 ka (Salgado-Labouriau, 1980) and glacier advances after 12.9 ka
in the vicinity of high-altitude lakes of the central Mérida Andes (Rull
et al,, 2005; Carrillo et al., 2008; Stansell et al,, 2010). The second part of
the YD is interrupted by a warm and wet period revealed by pollen re-
cords (Fig. 4D) and to a lesser extend in SST record (Fig. 4C). This drastic
change, attributed to change of the Atlantic Ocean circulation (Stansell
et al, 2010), is compatible with older and probably maximized radio-
carbon dating deduced from peat buried beneath the YD moraine and
belong in the time interval of the TCN age (Mu09-15).

Once recomputed with a time-dependant production scheme (see
Methods section for details and Table 2), the TCN dating of Wesnousky
et al. (2012) allows the relation of the La Victoria and Los Zerpa
moraines to the Younger Dryas (Figs. 3B, 5E and Table 2). Because of
the proximity of the valleys to one another, the altitudinal lag of the
YD moraines cannot be justified by global climate changes but rather
by local conditions connected to valley orientation and climate regime.
In the Mérida Andes the steep topography controls local climate
(Pulwarty et al,, 1998), and moisture is carried by easterly trade winds
charged with humidity originating from the Caribbean Sea and tropical
lowlands (Villagran, 1993). Modern meteorological survey data
(Table 3) indicate a clear climate divide between the wetter Santo
Domingo valley and dryer Mucuchies valley. These opposed climate
conditions and valley orientations seem to have been sufficient to result
in an altitudinal lag of the YD moraines.

In the Mucubaji valley, the age distribution suggests a rapid ice melt-
ing during the upper Pleistocene/early Holocene transition (Fig. 4).
From Level 8 (Mu09-14, 3862 m asl) to Level 10 (Mu09-10 and
Mu09-12, average 4079 m asl), the ages are remarkably consistent
with a WA age of 9.72 4 0.43 ka including Mu09-12 or, 949 +
0.48 ka excluding Mu09-12 (see Result section for details). We consid-
ered 3 different levels (Levels 8, 9, and 10), which define the glacier
front during upper Pleistocene/early Holocene (Figs. 4A and 5F). Levels

8 and 9, corresponding to frontal moraines, were abandoned during a
sharp period of warming identified by a rise of ~1.5°C in the SST record,
and Level 10 corresponds to a weak warming centered around 9 ka
(Fig. 4C). The extreme age and altitude differences between the lower
and higher sites (Level 8 and Level 10, respectively) indicate a rise of
the vertical ice retreat with a rate of ~310 m/ka, whereas it was
~25 m/ka between the Oldest Dryas and late Pleistocene. The particu-
larly short time interval associated with the ~250-m rise of the ice
front demonstrates the strong climate forcing on the glacier balance
during the beginning of the Holocene and agrees with the absence of
frontal moraine relics in this area. Other information endorse this obser-
vation, such as the high magnetic susceptibility of the lakes sediments
(Mucubaji and Negra) since the Younger Dryas and up to 10 ka
(Stansell et al.,, 2005; Carrillo et al.,, 2008) and palynological records,
which emphasize climate conditions close to present day (Rull, 1996).

Even if no TCN data present a chronological constraint since the
Pleistocene/Holocene transition, sediment descriptions of the Laguna
de Mucubaji (Carrillo et al., 2008) and peat bogs (Stansell et al., 2005)
indicate a glacial activity at least up to ~6 ka (i.e., La Culata Dry
Phase). This short period has been identified as cooler and dryer than
the overall Holocene (Salgado-Labouriau and Schubert, 1976), with a
negative hydrological budget and a decreased precipitation/evaporation
ratio (Rull, 1996). This event was identified from decreases of the mag-
netic susceptibility, indicating a reduction of magnetic mineral inputs
in the lake sediments (Carrillo et al., 2008) and the development of
organic-rich sedimentation in bogs (Stansell et al., 2005). However,
the origin of this magnetic career reduction and its relation with glacier
activity is still subject to debate because of the absence of glacial relicts.
Mahaney et al. (2007b) suggested that the sediment variation could
have been the consequence of many parameters (hydrologic, climatic,
geomorphic or tectonic).

The Little Ice Age (LIA) was suggested at different locations in the
Venezuelan Andes by evidence of ice re-advances above 4200 m asl
(Schubert, 1972; Schubert and Valastro, 1974; Schubert, 1975; Rull
and Schubert, 1989) and related to a temperature drop of 3.2 + 0.4°C
and a 20% increase of precipitation (Polissar et al, 2006). In the
Mucubaji area, only an increase of magnetic susceptibility between
605 and 130 cal yr BP, assigned to an enhanced input of detrital mate-
rial in the lake (Polissar et al., 2006), supports possible glacier erosion.
However, while LIA moraines have been described in the Humboldt
massif (Schubert, 1972, 1998), in the upper Mucubaji area the valley
opens and forms a glacial cirque mainly covered by mass-wasting
deposits (Mahaney et al., 2007b). The absence of moraines does not
allow confirmation of a glacier re-advance. Susceptibility variation
can be linked to intensification of runoff related to an increase of
precipitation (Polissar et al., 2006).

Conclusions

Sixteen new TCN and compiled published ages of glacial landforms
provide the first post-LGM chronology of the ice retreat in the
Venezuelan Andes. The constructed chronology agrees with the paleo-
climatic records, indicating the direct control of the global climate on
the evolution of South American tropical glaciers. The most extensive
glacial advance has been dated at 18.1 ka, but the largest moraine
ridge has been dated at 16.8 ka. In the lower zone of the Mucubaji valley
(<3700 m), five moraine ridges dated between 18.1 and 15.8 ka indi-
cate successive stages of breaks in the overall glacier retreat. Above
3700 m asl, new dating of striated bedrock provides the timing of the
end of deglaciation up to the Pleistocene/Holocene transition. In partic-
ular, our results provide additional information on the occurrence of the
Oldest, Older and Younger Dryas and indicate the disappearance of the
glacier at ~9.5 ka. Possible reactivations of confined glaciers suggested
from limnological investigations at ~6 ka and during the LIA have not
been confirmed by this study.
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The chronological dataset allows the calculation of vertical ice retreat
of 25 m/ka before the Younger Dryas, connected to the temperature
evolution from —7°C (LGM) to —3°C (~13 ka). After the Younger
Dryas and up ~9.5 ka, the retreat was stronger, with an approximate
310 m/ka vertical rate associated with an increase in temperature of 3°C.

The altitude difference of the Younger Dryas moraines in the
Mucubaji (~3800 m), La Victoria (~3250 m) and Los Zerpa (~3100 m)
valleys suggests local effects on glacier evolution due to contrasted
climate conditions on both side of the Mucubaji pass.
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V-2.1.2 Gavidia valley

The Gavidia valley is one of the few valleys in Sierra Nevada with NE-SW oriented
accumulation zone. The valley is characterized by low valley bottom slopes (~5-7°).
This valley is not directly connected to the Chama river catchment (Figure V-1). How
does the Gavidia glacier dynamics compare to the Mucubaji glacier? Is there any
influence of the geomorphological features before in the deglaciation history? When did
glacier fill the entire valley? When does it disappear? These questions remained open
because of absence of deglaciation chronologies in the Gavidia valley. Original
exposure ages range from 14.6+1.2 ka to 28.2+1.2 ka considering the Lago Argentino
production rate (Kaplan et al., 2011). Updated exposure ages, considering the recent
"Be production rate (Kelly et al., 2013), were recalculated (Table V-3). Updated ages
are ~3 % older than the original values. These differences do not significantly impact

the interpretations.
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Abstract

Understanding the timing of the tropical glaciations in the Northern Andes, has
important implications for deciphering the regional-scale climate change during the last
glacial cycle. In the Venezuelan Andes the last glaciation (Mérida Glaciation) is poorly
reconstructed because of limited chronological data. Despite well preserved glacial
landforms are located between 2600 and 4978 m a.s.l. This paper presents 24 exposure
ages from glacial landforms mainly sampled in the Gavidia valley. Exposure ages were
obtained based on terrestrial cosmogenic "Be exposure dating. Results indicate
deglaciation began between ~21 ka-16.5 ka and the full deglaciation occurred at ~ 16
ka. The glacier retreated during two distinct phases. The oldest one occurred since the
LGM until middle OtD or the local climate event El Caballo Stadial. The youngest

phase occurred at ages younger than ~16.5 ka.

Asynchronous deglaciation histories in the Mérida Andes post LGM were observed.
This is based on comparisons with other deglaciation histories of the area. This behavior
is related in this study to different local paleoclimate conditions, valley orientation,

insolation and catchments steepness.
Keywords

Terrestrial cosmogenic nuclides dating, TCN, cosmogenic dating, glacial landforms,

Andes Mérida, Venezuela. Pleistocene, Late Glacial, LGM
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1. Introduction

Glaciers studies in the Mérida Andes mountains date from the beginning of the XIX"
century (Sievers, 1885 and Goering, 1962). Jahn (1912, 1925 and 1931) made the first
planimetric measures for the existent glaciers. Then, a large and detailed bibliographic
compilation about glaciological observations was made by Schubert (e.g. 1972; 1974;
1980; 1980a; 1992 and 1998). From Last Glacial Maximum (LGM) and the middle of
XX century, glacier covering were reduced from around 200 km® (Schubert y
Clapperton, 1990) to 10 km? (Schubert, 1992). Finally, glacier surface was reduced from
0.33 km? during in 2008 (Carrillo and Yépez, 2008) to 0.017 km? in 2011 (Braun and
Bezada 2013).

Deglaciation studies of tropical former glaciers allow improving future climatic
projections. Deglaciation studies in the tropical Andes are mainly developed in the
Peruvian, Bolivian or Ecuadorian Andes. Despite well preserved glacial landforms in
the Mérida Andes are also present. In this area, deglaciation chronologies are not
regionally uniform and data are too scattered to reconstruct a more detailed deglaciation
history. First geochronological studies were based on radiocarbon chronology
(Schubert, 1970; Salgado-Laboriau and Schubert, 1977; Schubert and Rinaldi, 1987;
Rull 1998; Mahaney et al., 2001; Dirszowsky et al., 2005; Stansell et al., 2005;
Mahaney et al., 2007 and Carrillo et al., 2008), Thermoluminescence (TL), ( Schubert
and Vaz, 1987 and Bezada, 1989), Optically Stimulated Luminescence (OSL, Mahaney
et al., 2000) and more recently, Terrestrial Cosmogenic Nuclide (TCN) dating
(Wesnousky et al., 2012; Angel et al., 2013; Carcaillet et al., 2013 and Guzman et al.,
2013).

We propose here a new glacial chronology based on 24 new TCN ages from the Gavidia
valley. We aim to precise (i) the timing of the last deglaciation in the Gavidia valley, (i1)
the comparison with other deglaciation histories in the MA maily based on '’Be
cosmonuclide dating and, (iii) the comparison with global, regional and local

paleoclimate records.
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2. Regional setting
2.1 Geologic, geomorphic and tectonic settings

The Mérida Andes (MA) cordillera is located in the west of Venezuela (Fig. 1) and
appears to be the northern topographic extension of the Eastern Cordillera of Colombia.
Trending ~N45°, the cordillera extends over 400 km and reaches a maximum elevation
of 4978 m asl (meter above sea level) at the Pico Bolivar. Its orogenesis is strongly
connected to the geodynamic interaction of the Panamd Arc, Caribbean and the South
American plates. Also other minor continental blocks are connected (Taboada et al.,
2000; Audemard and Audemard, 2002; Bermudez, 2009; Monod et al., 2010). The
present MA mountain build up is a direct consequence of the oblique convergence
between the Maracaibo Triangular Block and the South American Plate (Colletta et al.,

1997; Audemard and Audemard, 2002).

Tectonic markers attesting the ongoing growth of the topography are (Audemard,
2003): a) the axial valleys that display well-preserved Quaternary staircase terrace
systems. Terraces have more than 500 m of vertical offset between the oldest terrace
and present river beds. b) Rivers cutting across the structural grain of the chain show
very distinct transverse “wine cup” profiles. Finally, c) synorogenic mollasic deposits
along both flanks of the chain deposited in flexural basins, whose thicknesses reach 8
and 3 km on the northwest and southeast of the MA, respectively. Quaternary uplift of
the MA may be attributed to thrust faulting and folding along the margins of the range
(e.g., Audemard and Audemard, 2002). Uplift rates in the MA were estimated based on:
a) the depths of formation of the igneous and metamorphic rocks outcropping at the
highest summits of the chain (Uplift rate ~2-5 mm/a) b) boulders in a faulted alluvial
fan along the Northwestern foothills (Uplift rate 1.7-0.7 mm/a, Wesnousky et al., 2012)
and, c) incision rate of the Santo Domingo river in fluvial terraces from the

Southeastern flank (uplift rate ~1.1 mm/a, Guzmaén et al., 2013).

Numerous glacial landforms were described since the 19" century, mainly moraines,
glacier cirques, glacier valleys, glacier lakes and paraglacial sediment deposits (Sievers,
1885, Jahn 1912, 1925; Schubert, 1970, 1974; Schubert and Valastro, 1974; Schubert
and Rinaldi, 1987; Bezada, 1989, Schubert and Clapperton, 1990). Tectonic control in
the glacial landforms has been extensively studied in this region where current

deformation is mainly accommodated by the Bocon6 fault (Audemard, 2003). This
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Figure 1. A) Digital shaded-relief map of the central Mérida Andes. The dots indicate
location cited in the study (see text for details) B) Aerial photography (Google earth,
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2014a) of the Gavidia valley with main geomorphological landforms and valley
contours.

structure is a NE-SW trending, dextral fault that extends for about 500 km down the
backbone of the MA (Fig. 1). It runs slightly oblique to the MA chain axis and bounds
the Caribbean Coast range of northern Venezuela on its western flank. Quaternary
tectonic rates range from 3 to 14 mm/a (Audemard, 2003). Between 5-9 mm/a based on
the Mucubaji valley, Los Zerpa and La Victoria moraines shifts (Schubert, 1980a;
Soulas, 1985; Soulas et al., 1986), between 2.3—-3.0 mm/a based on El Desecho moraine
study (Audemard et al., 1999) and between <5.5 to 6.5 mm/a based on right-lateral

offset of La Victoria and Los Zerpa moraines (Wesnousky et al., 2012).

2.1.1 Geomorphic description:

The Gavidia valley is located in the Sierra Nevada de Mérida, in the Venezuelan Andes
(Fig. 1). It is a postglacial u-shaped valley with the headwall at Pico Alto Santo Cristo
(4230 m). This area is deformed by two different inferred faults (Fig. 1B). The rock
lithology is dominated by quartz gneiss from the Iglesias Complex (Hackley et al.,
2005). Foliation and glacier striations are easily recognizable and discernable on large
bedrock surfaces (Fig. 2A). The valley bottom exposes numerous striated and polished
surfaces (roches moutonnées), although moraine development is not as evident as those
described in other nearby glacier valleys. Dispersed polished surfaces appear along the

valley side-walls (Fig. 2). Finally, the valley profile can be separated in two main areas:

- Low part (~3250-~3600 m a.s.]) has a NW-SE orientation and stretches for about 4 km
length with frequent roches moutonnées (Fig. 2). The valley exhibits a < 5° dipping
slope, as well as perpendicular hanging valleys (Fig. 1B). A ~40 m high step crossing
the valley defines the upper limit of this part, close to sample GA-1207 (Fig. 1).

- In the high part (~3600-~4200 m a.s.l), the valley is NE-SW orientation with ~5 km
length with an average slopes ranging between 3-7°. The highest part is mainly filled by
gelifract deposits. In this upper area is under the influence of two glacier cirques
(Fig.1B). Small moraine developments are found with ridges <10 m high. A glacier

valley step of ~100 m high is evidenced close to sample GA-1212 (Fig.1B).
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2.1 Paleoclimatic setting

Quaternary climate studies in the MA are based on analysis of lacustrine, fluvial, glacial
deposits and paleosols (e.g. Schubert, 1974; Schubert and Valastro, 1980a; Salgado
Labouriau, 1984; Bradley et al., 1985; Salgado-Labouriau, 1989; Weingarten , 1990;
Yuretich, 1991; Salgado-Labouriau et al., 1992; Rull, 1995; Mahaney et al., 2000;
Dirszowsky, 2005; Rull et al., 2005; Stansell et al., 2005; Mahaney et al., 2007; Carrillo
et al., 2008; Rull et al., 2010; Stansell et al., 2010). Influence of glaciations in the
central MA is mainly evidenced from two moraine complexes mapped between 2600-
2800 m and 2900-3500 m. Moraines complexes were observed in Paramo de La Culata,
Paramo de Piedras Blancas and Sierra de Santo Domingo. These two complexes were
first pointed out by Royo and Gémez (1959) and later assigned to the Early and Late
Meérida Glaciation respectively (Schubert, 1970 and 1974). Early Mérida Glaciation is
poorly constrained, only few chronological data are available and ages range between
~60 and ~90 ka (Mahaney et al., 2000; Mahaney et al., 2001; Dirszowsky et al., 2005;
Mahaney et al., 2010; Mahaney et al., 2011). Late Mérida Glaciation (Late Wisconsin)
is better constrained and range between 25-13 ka (Schubert and Clapperton, 1990). Last
one includes the Last Glacial Maximum (LGM) between 22.75 and 19.96 Cal ka BP
(Schubert and Rinaldi, 1987).

Paleoclimate information before the Early Mérida glaciation is not extensively
available. Sparse evidences of glacial deposition prior to Mérida Glaciation have been
observed. Between the Early and the Late Mérida Glaciation were stablished interstadial
conditions. These conditions were stablished based on sedimentological studies of 8 m
record of predominantly lacustrine material from the PEDS section (Fig. 1A)
(Dirszowsky et al., 2005; Rull, 2005). Warmer and wetter climate conditions were also
interpreted during the same period from alluvial terraces analysis: 1) A terrace in the
valley of Motatén river with peat layers dated (**C on wood) between 50.6 and 33.7 "*C
ka BP (Schubert and Valastro, 1980; Schubert and Vivas, 1993) and, 2) Terraces from
the lower part of the Santo Domingo river (Fig. 1A) with ages ranging between 65 and
22 ka (Guzman et al., 2013). OSL ages between 31-26 ka from sandy silt overlain by
glacially deformed sand, extend the record of interstadial conditions to the immediate
onset of the Late Mérida Stadial (ca. 25 ka). These ages were determined on the study of
RF3 section (2800 m a.s.l.) in La Canoa valley at Pueblo Llano (Fig. 1A) (Schubert and
Clapperton, 1990).
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Modern equilibrium line altitudes (ELA) are estimated between 4880 and 4470 m a.s.l.
During the LGM, ELAs were 850 to 1420 m lower than the present. Local LGM
temperatures were at least 8.8+2°C cooler than today, based on a combined energy and
mass-balance equation to account for an ELA lowering (Stansell et al., 2007). In the
Mucubaji valley LGM is related to the frontal moraine at an exposure age of 18.14 +

2.11 ka (weighted average, Carcaillet et al., 2013).

El Caballo Stadial, a cold period dated at 16.5+0.3 ka BP was identified based on pollen
content of fluvioglacial sediments from Mesa del Caballo section. Temperatures were
around 7°C lower than today (Rull, 1998). Local Last Glacial Maximum (LLGM)
established for Sierra Nevada at 16.7+1.4 ka and from Sierra del Norte at 15.2+0.9 ka
could be related to this period (Wesnousky et al., 2012). In Los Zerpa and La Victoria
moraines, recalculated ages and addition of new samples analyses indicate weighted
average age of the abandonment 14.5 + 0.8 ka and 13.5 + 0.7, respectively. In this
scenario, Los Zerpa moraines formation was related to the Younger Dryas (Carcaillet et

al., 2013).

Stansell et al. (2005) concluded that in Sierra del Norte, glaciers had significantly
retreated by 15.70 ka BP. Then, several minor glacial advances and retreats between
14.85 and 13.83 ka BP also happened. However, authors do not specify how long
glaciers retreat. A moraine inset into the former laterofrontal moraines of La Culata
(Sierra del Norte) was interpreted as a small Late Glacial readvance at weighted average
exposure age of 14.1+x1.0 ka (Wesnousky et al., 2012). In Sierra Nevada, records
indicate initial glacial retreat at 14.24 ka BP (Stansell et al., 2005). However, TCN
dating at least indicates an early deglaciation at 18.14 + 2.11 ka, based on weighted

average exposure age of the Mucubaji terminal moraine (Carcaillet et al., 2013).

Based on paleoecological analysis of the Late Quaternary terrace from Mucubaji valley,
Salgado-Labouriau and Schubert (1977) defined Mucubaji Cold phase at 12.65 ka BP.
An average temperature 2.9°C lower than current temperature was inferred during this
period. Rull et al. (2005, 2010) relate this to the Younger Dryas (YD) advance, based on
pollen analysis from Laguna Verde Alta between 12.60 and 11.00 ka BP. Whereas in
Laguna Los Anteojos (Sierra Nevada) based on geochemical and sedimentological

analyses was determined between 12.86 and 11.65 ka BP. Temperature decline between
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2.5 and 3.8 °C (Stansell et al., 2010). Results show that glaciers advanced at ~12.85 ka
BP. Glaciers reached their maximum extent at ~12.65 ka BP. Then glaciers retreated

until complete deglaciation of the watershed at ~11.75 ka BP.

During the YD, ELA values were 360 to 480 m lower than the present (Stansell et al.,
2010). In the Humboldt Massif, till and paraglacial outwash deposits underlying peats,
provide maximum limiting ages for the late Pleistocene glacier advances. Advance
happened at 12.4 ka (Mahaney et al., 2008). Carrillo et al. (2008) determined from
magnetic susceptibility record in the Mucubaji core sediment, a cold climate condition
during the YD (~11.6 ka- ~12.8 ka BP). Also abrupt warm climate conditions were
determined at the onset of the Holocene (~11.6 ka BP).

Pollen records indicate that vegetation and climate have remained similar to today
through most of the Holocene (Salgado-Labouriau et al., 1988, 1992; Rull, 1999).
However, some minor cold events occurred at 6.0-5.3 '*C ka BP (La Culata cold/dry
phase; Salgado-Labouriau and Schubert, 1976). Also occurred within the XI to XIV
centuries named ‘“Piedras Blancas cold phase” and assigned to the Little Ice Age (LIA)
(Rull et al., 1987; Salgado-Labouriau, 1989). Moreover, relatively warm conditions
occurring 9.4-6.3 and 3.6-2.5 ka BP (Miranda warm phases; Salgado- Labouriau et al.,
1988; Schubert and Vivas, 1993).

2.2 Present-day climatic conditions

The climate of the northern tropics is mainly controlled by the Intertropical
Convergence Zone (ITCZ). It is highly dependent on the seasonal cycle of solar
declination. Average temperature in the MA varies little seasonally, but diurnal
temperature fluctuations may be as much as 20°C (Schubert and Clapperton, 1990).
These temperature variations are controlled by insolation and cloudiness factors

(Monasterios and Reyes, 1980).

Moisture is predominantly derived from evaporation over the tropical Atlantic and
evapotranspiration from the Orinoco River Basin (Pulwarty et al., 1998). Then, moisture
is advected to the Andes by easterly trade winds. Also a modern climate data from the

MA demonstrate the strong influence of equatorial Pacific Sea Surface Temperature

144



(SST, Polissar et al., 2013). Precipitation is highly seasonal, with a maximum during the
boreal summer and minimum during winter. At high elevation, precipitation patterns are
also affected by orographic controls and local mountain circulation systems (Pulwarty et

al., 1998).

Climate in the MA is also influenced by surrounding Maracaibo, Los Llanos and Lara-
Falcén basins (NE to the Maracaibo basin) (Monasterio y Reyes, 1980). The NE area is
under the influence of the semi-arid Lara-Falcon basin. This area is characterized by a
bimodal rainfall pattern and low rainfall values (e.g. Cende 653 mm). Los Llanos basin
mainly influences the southern MA hillsides climate. This climate is characterized by an
unimodal rainfall pattern and medium rainfall values (e.g. Mesitas 840 mm).
Northernmost of the MA is characterized by a bimodal rainfall pattern originate from
the Maracaibo Lake basin. Rainfall values could be higher than 1000 mm in this area

(e.g. La Culata) (Monasterio y Reyes, 1980).
3. Materials and methods
3.1 "°Be nuclide dating implications on deglaciation studies

Beryllium-10 (loBe) is a cosmogenic nuclide isotope (Half-life 1.36+/- 0.07 Ma)
produced by the interaction between cosmic rays and chemical targets of the Earth
environment. The in-situ produced '’Be is formed in the first meters of the lithosphere
(Terrestrial Cosmogenic Nuclide TCN). And thus constitutes a suitable tool for dating
exposure time of rock surfaces. Glaciers create landforms that, after deglaciation, are
exposed to cosmic rays. TCN geochronology is thus suitable to date the onset of the
exposure after complete ice melting. Because of the potential post-deglaciation
processes that could erode the glacial surface, exposure ages are assumed as minimum
ages (Nishiizumi et al., 1989; Briner and Swanson, 1998; Siame, 2000; Gosse and
Phillips, 2001; Dunai, 2010; Balco, 2011).

Several methods have been used to date glacier dynamics, among them the radiocarbon
determinations of organic materials. Two main limitations derive from this technique.
A) Glaciers advances do not create organic material, meaning that radiocarbon dates

provide glacial landforms bracketing ages only (Balco, 2011). B) Only a minority of
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glaciers leave deposits that can be radiocarbon dated, due to the scarce vegetation in the

glaciers environments (Balco, 2011).

In contrast to moraines, where eroded boulders may result in dispersed ages; bedrock
surfaces are largely insensitive to postglacial disturbance. Therefore, these geomorphic
markers provide a more accurate age control. However, insufficient erosion (less than 2-
3 m) will not fully remove the inherited nuclide component in pre exposed bedrock.
This implies overestimated exposure ages not related to the glacial retreat age (Gosse et

al., 1995; Guido et al., 2007 and Balco, 2011).

In details, exposure dating of boulders located on the top crest of the terminal moraine
represents the single exposure history of each individual boulder (Ivy-Ochs et al., 2007).
The integrated population of ages, however, indicates the averaged age of final moraine
stabilization, when all boulders became finally embedded in the moraine matrix
(Putkonen and Swanson, 2003). We consider that boulders sampled in the crest of
frontal moraines will indicate the beginning of the glacier front retreat. Meanwhile
boulders sampled from the crest of lateral moraines will indicate the beginning of the

glacier thinning.

In this paper, ages results are noted as exposure ages in ka, indicating deglaciation time
or abandonment age. Also because origins of terminal moraines make possible to
establish a relationship with maximum glacier advances (e.g. Winkler, 2005; Schaefer et
al., 2009; Kaplan et al., 2010, Bickerton and Matthews, 1992, 1993; Matthews, 2005;
Shakesby et al., 2006, Schaefer et al., 2009, Richards, 2000, Carcaillet et al., 2103.,
Wesnousky et al., 2011, Kirkbride and Winkler, 2012). In this paper, maximum glacier

advances are related to the position of terminal or lateral-terminal moraines.

3.2 Samples collection

Samples were collected from the valley bottom and the valley side-wall (Fig. 2). All
samples were collected in the Gavidia valley. Only the lower one (GA-1201) was
sampled in the northernmost of the area (Fig. 2). Samples were collected on striated
and/or polished rocks emerging from the surface, in order to minimize a potential late

coverage by superficial deposits.
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arrows C) Difference in orientation between glacier striation (white arrows) and
foliation (white lines) on a sub horizontal glacial surface. D) Sample position in the
Gavidia valley (Google earth, 2014b). White stars are polished surface, Grey stars are

roches moutonnées, and white dots are moraine boulders.

TCN '“Be chemical targets were prepared at the cosmogenic laboratory at ISTerre,
France, following procedures adapted from Brown et al. (1991) and Merchel and
Herpers (1999). Measurements were carried out at the French National AMS facility
(Accelerator Mass Spectrometry) at ASTER in Aix-en-Provence. Ages were calculated
using the online Cronus calculator (Balco et al., 2008). Recent reference 10Be
production rate (i.e., production rates by neutron spallation appropriate for sea-level,
high-latitude sites SLHL) were determined in the tropical Andes; 3.78+0.09 at.g'l.yr'1
when erosion is 0 cm/yr (Kelly et al., 2013). In this study we used Lago Argentino
calibration in Cronus online calculator with a '°Be production rate of 3.81+0.13 at.g™".yr”
! (Kaplan et al., 2011). This production rate was used because there are no significant
differences with Kelly et al. (2013) value and calibration was available in Cronus online
calculator. Ages were computed using the scaling scheme of time dependent model
from Lal (1991) modified by Stone (2000). This scaling scheme was selected because it
considers the geomagnetic field variation (Balco et al., 2008). This is important in the
present study because the magnetic modulation has a particularly critical effect in the

vicinity of the magnetic Equator where the samples were collected.

Long-term erosion rates of boulders in the tropical Andes have been reported between
0.3-0.5 m.Myr™ (Smith et al., 2005) and 0.45 m.Myr" (Kelly et al., 2013). Comparison
of extreme exposure ages with 0 and 4.5 m.Myr' give not significant differences at the
“post-LGM scale”. For this reason and because the clear observation of the striations
and polished surfaces on sampled bedrock, erosion rate of 0 m.Myr™" was considered for
calculations. Based on valley side-wall samples GA-1208L and GA-1216L, glacier
thickness could be more than 50-100 m. This glacier thickness should be enough to
avoid TCN production during the last climatic cycle (i.e. during the presence of glacier

tongue).
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4. Results

Twenty-four rock samples were collected for TCN investigations in order to calculate
exposure ages which represent time since the sampled landform was ice-free. "Be
concentrations in the Gavidia valley range between 2.25 + 0.08 (GA-1201) and 5.09 +
0.16 (GA-1214) .10° atoms per gram of quartz (at.g'l) (Table 1). Once computed as
exposure ages, results range between 13.98 + 1.19 and 27.22 + 1.32 ka (Table 1). Table
1 summarizes exposure ages and input data used in the Cronus online calculator 2.2
(Balco et al., 2008). Analytical uncertainties are in general lower than 10% with only

GA-1205 around 14% (Table 1).

Ages results could be divided in two groups, ages younger and older than ~20 ka (Fig.
3). Exposure ages of polished surfaces from the valley side-walls, are older than those
from the valley bottom (Fig. 3). Two exceptions, GA-1214L (16.59+0.64 ka) and GA-
1215L (16.06+0.63 ka) are significant different and younger. These landforms could be
affected by post deglaciation processes (covered by sediments or focused limited
erosion). For that, GA-1214L and GA-1215L were considered as outliers and will not
be considered to in the following. GA-1218L (27.22+1.32 ka) is the oldest TCN age.
However, it location at low elevation compared to GA-1216L and GA-1217L (Table 1)
suggests a significant content of '"Be inherited. This sample was thus considered as

outlier and will not be considered to in the following.
5. Discussion
5.1 Deglaciation history in the Gavidia valley:

The valley bottom dating results indicate a correlation with elevation (Fig.2). However,
higher altitude exposure ages (including the glacier cirque and surroundings) indicate no
significant variations (Fig. 3). This suggests that all the target glaciers landforms were

abandoned during the Late Mérida Glaciation.

Exposure ages issued from bedrock samples should give more accurate deglaciation
ages compared to exposure ages issued from moraine boulders (Gosse et al., 1995;
Guido et al., 2007 and Balco, 2011). However, it is difficult to consider these ages as
representing the maximum glacier advance because of the absence of terminal or lateral
terminal-moraines. Based on exposure ages from GA-1201, the maximum glacier

advance period is bracketed between ~21 ka and ~16.5 ka. The homogeneous data set
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identifies to samples collected on the valley side-walls (see text for details).

obtained in the glacier cirque and surroundings suggests a complete deglaciation around
~16 ka (Fig. 3). Because of similar valley orientation, average altitudes and proximity of
other higher glacier cirques presents in this area. Those related to the samples GA-1302
FE and GA-1303 FE, Fig. 3, Table 1), this area have possibly been ice free during the

same period.

The valley bottom topography does not show significant slope variations. Considering
the horizontal ice retreat, deglaciation happened in two phases. The first one happened
from ~21 ka to ~16.5 ka; it yields an average glacier retreat rate of ~0.26 km/ka. While
the second one happened after ~16.5 ka, it yields an average retreat rate of ~4.70 km/ka.

Side-wall valley samples (GA-1208L and GA-1216L) indicate a glacier maximum

thickness ranging between 50 m and 100 m. Similar to thickness estimations in the
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Table 1. TCN results of the Gavidia valley. (a) The topographic scaling factor has been calculated following the method of Dunne et al. (1999).
(b) AMS analyses have been carried out at the French AMS facility ASTER. (c) Beryllium 10 concentrations were calibrated against NIST
Standard Reference Material 4325 using its certified '°Be/’Be ratio of 2.79 10" and a '°Be half life of 1.387 % 0.012 10° yr (Korschinek et al.,
2009; Chmeleff et al., 2010). Results have been corrected from the chemical blank (IOBe/ 9Beblank = 2625+ 032 x 107 ). Propagated
uncertainties include counting statistics, a conservative estimate of 1% for instrumental variability, the uncertainty of the standard deviation and
chemical blank. (d) Ages have been computed with the Cronus Calculator (Balco et al., 2008) using the time-dependent production rate of Lal
(1991) modified by Stone (2000). (d) Internal uncertainties consider the analytical uncertainties, while the external uncertainties include 3.4%
uncertainty in the production rate (Kaplan et al., 2011) and 8% uncertainty in the '’Be decay constant. In the Results section, results are presented
with the external uncertainties. No correction for snow or other coverage have been taken into account, the sample thickness correction has been

calculated with a 2.7 density factor. *Moraine boulder GA-1209 with dimensions in meters of 1.5x1.8x1.2.
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YBe/’Be

. oo . 10
Samples Latitude Longitude Elevation . Site . Sz.lmple Shleldl(r;)g Scaled production blank Be . (© Ages®?
information Thickness factor rates (b) concentraction
corrected
Spallations Muons Value Uncertainty Value Externgl Internal'
uncertainty — uncertainty
°N °W M cm atoms/g/yr x 10 10° atoms/gQtz/yr ka
GA-1201 8.694 70.940 3198 Polished rock 3 0.488 8.88 0.480 2.04 225.00 8.31 21.679 1.085 0.899
Roche
GA-1203 8.674 70.919 3374 moutonnée 1 0.942 19.10 0.510 1.90 294.39 22.92 13.977 1.188 1.178
Roche
GA-1205 8.667 70912 3428 moutonnée 1.5 0.927 19.24 0.515 2.48 334.48 43.33 15.640 2.096 2.207
Roche
GA-1206 8.663 70.909 3494 moutonnée 2 0.920 19.66 0.523 422 375.30 19.66 17.025 1.062 0.983
Roche
GA-1207 8.662 70.906 3568 moutonnée 2 0.989 21.93 0.533 4.17 410.76 18.19 16.752 0.933 0.817
Polished rock
( side-wall
GA-1208 L 8.654 70.909 3635 valley) 6 0.543 12.15 0.535 2.23 306.78 16.78 21.760 1.402 1.344
Boulder in a
lateral
GA-1209 8.653 70.908 3592 moraine 1.5 0.934 21.05 0.539 3.24 364.73 19.10 15.589 0.972 0.892
Roche
GA-1211 8.648 70.910 3654 moutonnée 3 0.973 22.33 0.543 3.83 388.66 14.74 15.664 0.794 0.650
Roche
GA-1212 8.646 70.911 3737 moutonnée 3.5 0.829 19.73 0.553 2.64 374.10 18.62 16.870 1.015 0.926
Roche
GA-1213 8.641 70.916 3810 moutonnée 2 0.955 23.85 0.569 4.21 444 .47 15.66 16.658 0.812 0.647
Polished rock
( side-wall
GA-1214 L 8.648 70.915 3884 valley) 5 0.999 25.21 0.571 4.80 467.38 16.45 16.587 0.808 152 0.644
Polished rock
( side-wall
GA-1215L 8.648 70916 3870 valley) 5 0.985 24.59 0.567 4.21 440.599 15.77 16.059 0.789 0.632

GA-1216 L 8.647 70.915 3840 Polished rock 2.3 0.523 13.22 0.572 1.88 363.55 24.36 23.337 1.757 1.790



GA-1217L

GA-1218 L
GA - 1301FE

GA - 1302FE

GA - 1303FE

GA - 1301

GA - 1302

GA - 1303

GA - 1304
GA - 1305

GA - 1306

8.647

8.644

8.646

8.643

8.641

8.647

8.649

8.655
8.626
8.625

8.631

70.915

70.914

70.926

70.930

70.930

70.924

70.923

70.927
70.933
70.933

70.924

3820

3805

3909

3964

3929
3930

3964

4150

4208
4197

3945

( side-wall
valley)
Polished rock
( side-wall
valley)
Polished rock
( side-wall
valley)
Roche
moutonnée
Roche
moutonnée
Roche
moutonnée
Roche
moutonnée
Roche
moutonnée
Roche
moutonnée

Striated rock

Striated rock
Roche
moutonnée

3.5

2.5

25

0.520

0.524

0.958

0.922

0.922

0.995

0.973

0.992
0.984
0.985

0.982

12.89

13.00

25.08

24.59

23.88

25.88

26.38

28.36
28.88
29.49

26.06

0.565

0.566

0.583

0.588

0.579

0.580

0.597

0.611
0.619
0.628

0.587

2.70

4.44

4.48

4.46

3.75

4.23

2.23

6.13
5.30
6.26

4.72

359.80

426.25

438.48

459.75

37.93

461.34

469.50

507.51
499.87
509.09

454.03

21.77

14.71

13.71

14.62

20.96

14.75

16.66

1591
15.51
15.89

17.19

23.633

27.221

15.740

16.717

14.122

16.032

16.029

16.071
15.549
15.699

15.811

1.643

1.316

0.723

0.774

0.928

0.744

0.784

0.739
0.713
0.713

0.795
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1.640

1.101

0.540

0.587

0.865

0.563

0.625

0.555
0.531
0.533

0.652



Mucubaji valley post Last Glacial Maximum (LGM) (Carcaillet et al., 2013).
Considering samples GA-1208L, GA-1216L, GA-1209 and GA-1212 vertical ice
thinning can be estimated. Thinning rates range between 7 m/ka to 18 m/ka (Fig. 2).
However, these estimations need to be taken as first order. More data is required to
establish a convincing vertical ice retreat behavior. Horizontal ice retreat is more

significant than the vertical ice thinning.

5.2 Comparing with other deglaciation histories in the Venezuelan Andes deduced from

"Be nuclide dating. Different glaciers dynamics and potential driving mechanisms.

Thirty-seven exposure ages are recently published from different valleys from the
central MA (Table 2). We recalculate with the same '’Be production rate of 3.81+0.13
at ¢! yr'' (Kaplan et al., 2011) and scaling scheme (Lal, 1991; Stone, 2000). Original
'"Be ages in the Mucubaji valley were calculated using production rate of 4.39+0.37
atoms g yr' (Carcaillet et al., 2013). This value is ~15% higher than Kaplan et al.
(2011) and Kelly et al. (2013) values. The new calculation for the Mucubaji valley data
yield an overall ageing of ~15% than original values (Table 2). For La Culata moraine,

the '"Be ages are < ~10% than the original dataset of Wesnousky et al. (2012).

Considering our updated calculation, exposure ages range in the MA between
10.95£0.97 ka to 23.63+1.64 ka (Fig.4, Fig.5, Table 1, and Table 2). All the data
correspond to an abandonment of the different glacial landforms during the Late
Pleistocene. All the landforms studied are consequently related to the Late Mérida
Glaciation. The youngest and oldest ages are also obtained in glacial landforms from the
Sierra Nevada de Mérida (10.52+0.48 ka and 23.63+1.64 ka). These ages comes from
the Mucubaji and the Gavidia valleys, respectively (modified exposure age from

Carcaillet et al., 2013 and this study).

Because some time lag could happen between maximum glacier advance and
deglaciation. We make the hypothesis that the age of the maximum glacier advance is
older than the age of terminal or lateral-terminal moraine abandonment. However,
considering the sensitive response of tropical glaciers to climate changes (Kaser and
Osmaston, 2002), we would expect a minimum time lag between glacier advance and

landform deglaciation or abandonment.
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Figure 4. Published '"Be ages distributions in the Venezuelan Andes. Ages were
recalculated with Lago Argentino calibration (Kaplan et al., 2011) from previous works:
ages with * correspond to Wesnousky et al. (2012) and ** correspond to, Carcaillet et

al. (2013).

Concerning the Sierra Nevada, in the Gavidia valley, the maximum glacier advance
happened between ~ 21 ka and ~ 16.5 ka. Meanwhile completely valley deglaciation
occurred around 16 ka. In the NE part of the Gavidia valley, deglaciation began in the
Mucubaji valley at 20.66+1.79 ka. As suggested by a distal frontal ridge dated (located
at ~3600 m a.s.l.; recalculated exposure age from Carcaillet et al., 2013). The former
authors proposed the Mucubaji glacier disappearance at ~11 ka. However, glacier
activity has been estimated at ~6 ka based on peat bog radiocarbon ages (Stansell et al.,

2005).

In the NE part of the Mucubaji valley, updated exposure ages from La Victoria terminal
moraine (located at ~ 3200 m a.s.l.) range from 16.37+0.76 to 19.75+4.00 ka (Table 2).
These ages implying that the deglaciation starts at 17.16+0.71 ka (weighted average).
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Table 2. '“Be dating inventory of the Venezuelan Andes (Wesnousky et al., 2012; Carcaillet et al., 2013). (a) Modified ages correspond to

recalculation using Lago Argentino production rate (Kaplan et al., 2011) and the scaling scheme model of Lal (1991) modified by Stone(2000).

Modified
Samples  Latitude Longitude Elevation Sample information Original ages (ka)  ages (ka)® Reference
External Internal
value uncertainty uncertainty
°N °W m Sampled landforms  Location ka ka

VEN1 8.7601 71.0516 3391 Boulder moraine La Culata 15.9+0.8 17.06 1.00 0.90 Wesnousky et al., 2012

VEN3 8.7654 71.0477 3457 Boulder moraine La Culata 15.4+0.7 16.61 0.89 0.76 Wesnousky et al., 2012

VEN4 8.7656 71.0476 3458 Boulder moraine La Culata 14.2+0.4 15.38 0.65 0.43 Wesnousky et al., 2012

VENS5 8.7663 71.0471 3467 Boulder moraine La Culata 14.4+0.6 15.63 0.82 0.76 Wesnousky et al., 2012

VENG6 8.7689 71.0457 3508 Boulder moraine La Culata 16.2+0.6 17.39 0.88 0.73 Wesnousky et al., 2012

VEN7 8.7697 71.0467 3472 Boulder moraine La Culata 14.3+0.7 15.52 0.91 0.81 Wesnousky et al., 2012

VENS 8.7697 71.0466 3472 Boulder moraine La Culata 13.1+0.6 14.27 0.82 0.72 Wesnousky et al., 2012

VEN9 8.7705 71.0466 3477 Boulder moraine La Culata 13.2+0.5 14.38 0.75 0.62 Wesnousky et al., 2012
VENI11 8.7721 71.0464 3501 Boulder moraine La Culata 15.4+0.7 16.61 0.93 0.82 Wesnousky et al., 2012
VEN12 8.7726 71.0463 3500 Boulder moraine La Culata 14.7+0.7 15.96 0.94 0.85 Wesnousky et al., 2012
VENI13 8.7729 71.0393 3657 Boulder moraine La Culata 14.2+0.5 15.38 0.76 0.61 Wesnousky et al., 2012
VEN14 8.7729 71.0395 3653 Boulder moraine La Culata 16.3+1.2 17.52 1.42 1.43 Wesnousky et al., 2012
VENI15 8.7727 71.0400 3651 Boulder moraine La Culata 14.7+0.7 15.89 0.96 0.87 Wesnousky et al., 2012
VEN19 8.8141 70.8006 3255 Boulder moraine La Victoria 18.6+3.7 19.75 4.00 4.38 Wesnousky et al., 2012
VEN20 8.8142 70.8006 3258 Boulder moraine La Victoria 16.9+1.0 18.07 1.17 1.10 Wesnousky et al., 2012
VEN21 8.8142 70.8010 3260 Boulder moraine La Victoria 15.3+0.6 16.49 0.86 0.73 Wesnousky et al., 2012
VEN23 8.8139 70.7993 3243 Boulder moraine La Victoria 15.1+0.5 16.37 0.76 0.58 Wesnousky et al., 2012
VEN25 8.8121 70.7881 3115 Boulder moraine Los Zerpa 17.7+1.4 18.92 1.60 1.63

Wesnouskqustgl., 2012



VEN26 8.8120 70.7873 3104 Boulder moraine Los Zerpa 15.0+1.6 16.20 1.74 1.80 Wesnousky et al., 2012

VEN27 8.8117 70.7875 3105 Boulder moraine Los Zerpa 17.8+0.5 18.92 0.85 0.63 Wesnousky et al., 2012
VEN28 8.8118 70.7873 3106 Boulder moraine Los Zerpa 16.9+0.9 18.20 1.10 1.01 Wesnousky et al., 2012
LZ709-01 8.81172 70.78837 3127 Boulder moraine Los Zerpa 13.84+1.74 15.78 1.56 1.60 Carcaillet et al., 2013
LZ09-02 8.81168 70.78742 3113 Boulder moraine Los Zerpa 12.48+1.39 14.33 1.14 1.17 Carcaillet et al., 2013
Boulder left side

Mu09-01 8.80093 70.82794 3620 frontal moraine Mucubaji 16.78+1.54 19.09 0.92 0.74 Carcaillet et al., 2013
Boulder frontal

Mu09-02 8.79535 70.8343 3589 moraine crest Mucubaji 18.14£2.11 20.66 1.79 1.85 Carcaillet et al., 2013
Boulder frontal

Mu09-03 8.79507 70.8267 3572 moraine crest Mucubaji 15.66+1.67 17.79 1.31 1.28 Carcaillet et al., 2013
Boulder frontal

Mu09-04 8.78741 70.82328 3607 moraine crest Mucubaji 13.27+1.20 15.19 0.69 0.51 Carcaillet et al., 2013
Boulder frontal

Mu09-05 8.78504 70.82292 3615 moraine crest Mucubaji 13.32+1.48 15.24 1.22 1.20 Carcaillet et al., 2013
Boulder frontal

Mu09-06 8.7852 70.82243 3620 moraine crest Mucubaji 15.96+1.80 18.14 1.49 1.50 Carcaillet et al., 2013

Mu09-07 8.77898 70.81973 3697 Striated bedrock Mucubaji 13.84+1.32 15.78 0.88 0.76 Carcaillet et al., 2013

Mu09-08 8.7785 70.8189 3727 Striated bedrock Mucubaji 14.20+1.34 16.17 0.86 0.73 Carcaillet et al., 2013

Mu09-10 8.76672 70.81287 4067 Striated bedrock Mucubaji 9.08+0.82 10.52 0.48 0.36 Carcaillet et al., 2013

Mu09-11 8.76326 70.81187 4213 Moraine boulder Mucubaji 10.63+0.96 12.30 0.56 0.41 Carcaillet et al., 2013

Mu09-12 8.76585 70.81214 4091 Striated bedrock Mucubaji 9.48+1.11 10.95 0.97 0.97 Carcaillet et al., 2013

Mu09-13 8.76894 70.81635 3982 Moraine boulder Mucubaji 9.73+0.88 11.23 0.52 0.40 Carcaillet et al., 2013

Mu09-14 8.77185 70.81516 3862 Moraine boulder Mucubaji 9.93+1.16 11.46 1.01 1.01 Carcaillet et al., 2013

Mu09-15 8.77584 70.81613 3804 Striated bedrock Mucubaji 12.86+1.57 14.75 1.38 1.40 Carcaillet et al., 2013
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This is consistent with the exposure age of the neighbor Los Zerpa terminal moraine

(located at ~3100 m) (17.57+£0.52 ka weighted average, modified from Wesnousky et

al.,, 2012; Carcaillet et al., 2013). La Victoria and Los Zerpas terminal moraines

represent until present, the lowest post-LGM glacier advance in Sierra Nevada.
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Figure 5. Altitudinal ages distribution of TCN dating in the Venezuelan Andes (This

study, Wesnousky et al., 2013; Carcaillet et al., 2013). Blue and red diamonds are

dating of the western side of the studied area (La Gavidia and La Culata valley

respectively). Orange, yellow and grey dots are dating of the eastern part (Mucubaji, La

Victoria and Los Zerpa valley respectively).
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In Sierra del Norte a deglaciation began at ~16 ka. Based on recalculated exposure ages
from La Culata terminal moraine (located between ~ 3400-3500 m) (Wesnousky et al.,
2012). This episode was related to La Victoria and Los Zerpa terminal moraines

deglaciation.

Differences in local climate or topographic features of glacier catchments and former
glacier features by itself (e.g. steepness, orientation, cloudiness, speed, insolation,
hypsometry, precipitation, temperatures, etc.), could explain the observed different
former glaciers behaviors (Paterson, 1994 in Bennett and Glasser, 2009; Barr and
Lovell, 2014). Glacier spatial variability in the northern Sierra de Santo Domingo
(includes Mucubaji, Victoria and Zerpa glaciers) seems to be mainly driven by
temperature differences (Stansell et al., 2007). This observation is based on LGM
equilibrium line altitudes (ELA) and paleo-temperatures reconstructions.
Paleoenvironmental records indicate regional drier conditions during the LGM
(Bradbury et al., 1981; Bradley et al., 1985; Weingarten et al., 1991; Salgado-Labouriau
et al., 1992). However, the gradient in ELA computations suggests also strong influence
of local conditions, such as precipitation, cloud cover and valley aspect (Stansell et al.,

2007).

Mucubaji valley is formed by a lower flat sector (3550-3700 m a.s.l.) and an upper
sector (3700-4600 m a.s.l.) with high slope (reaching ~20°). High steepness could
contribute to a lower speed of glacier withdrawal than the one of the Gavidia valley
(with slope values ranging between 3-7°). General valley topography may also influence
the glacier dynamic. Gavidia is separated from the Chama valley by a narrow deep
gorge whereas the Culata-Chama and Mucubaji-Santo Domingo confluences are wider
(Fig. 4). These topographical features may confer different atmospheric circulation
which controls humidity, air temperature and rainfall. Insolation can be another strong
playing factor. Faster extinction rates observed in the Gavidia valley could be explained

by the different accumulation zone orientation (NE-SW orientation).

5.3 Correlation with global, regional and local paleoclimate data.

Gavidia valley exposure ages were compared with a global (i.e. 50 values in the

GISP2; Stuiver et al., 1995), regional (i.e. Sea Surface Temperatures — SST - deduced
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from Mg/Ca in sediment of the Cariaco Basin; Lea et al., 2003) and local paleoclimate
proxies, extracted from proglacial sediments. Fluvioglacial terraces in the Paramo de La
Culata, Mucubaji or Miranda (Salgado-Laboriau and Schubert, 1976; Salgado-Laboriau,
et al., 1977; Salgado-Laboriau, et al., 1988; Mahaney et al., 2008). Also glaciofluvial or
glaciolacustrine sediments from Mesa del Caballo or El Pedregal fan complex (Schubert
and Rinaldi, 1987, Rull, 1998, Rull, 2005, Dirszowsky et al., 2005, Mahaney et al.,
2010). Paleosols (Mahaney et al., 2007) and lake sediments from the Sierra Nevada,
Paramos Piedras Blancas and Agua Blanca (Rull et al., 2005, Stansell et al., 2005,
Polissar et al., 2006, Rull et al., 2010, Stansell et al., 2014).

The maximum extension in the northernmost of the Gavidia glacier (~21 ka) correlates
with negative values of 5'*0 (Stuiver et al., 1995) and low SST (Fig.6). (Lea et al.,
2003). At local scale, palynological analysis of Mesa del Caballo section confirms the
cold conditions established during the LGM, between 19.96 ka and 22.75 ka (Schubert
and Rinaldi, 1987).

The Oldest Dryas (OtD) was identified in the northern hemisphere as a cold period
ranging between (~17.50 to ~14.60 cal ka BP) (Blunier et al., 1998). The OtD may have
affected the northern South America between 17.50 to 17.00 cal ka BP, based on the
SST record (Lea et al., 2003). In the MA a cold period was identified (called El Caballo
Stadial) at 16.5+0.3 ka (Rull, 1998). With an estimated temperature 7°C lower than the
present value (Fig.6). This cold episode was identified as the last cold event recorded in
the Gavidia valley (Fig. 6). Here, the glacier drastically retreats even before the end of
the OtD. This drastic retreat could be finally rather related to the end of the local El
Caballo Stadial period.

For the Late Glacial, during the Younger Dryas (YD) is evidenced in GISP2 and SST
records by significant drops of 8'°0 and temperatures respectively (Fig.6). In the MA
Salgado-Labouriau and Schubert (1977) defined a Mucubaji phase with two stages
(“Cold I” and “Warm”). Cold Mucubaji phase I at 12.65 ka BP was defined based on
paleoecological analysis of Mucubaji valley terrace. This phase was related to YD (Rull
et al., 2005; 2010). Based on magnetic susceptibility in sediment core from Mucubaji
Lake, Carrillo et al. (2008) also determined cold climate conditions during ~11.6- ~12.8

ka BP. Coherently with these observations, but based on geochemical and clastic
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sediment analyses from Laguna Los Anteojos, Stansell et al. (2010) identified cold and

drier conditions during the same period.
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Figure 6. A) Altitudinal relation of the Gavidia glacier chronologies versus global (B),

regional (C) and local (D) paleoclimatic proxy records. Dots are samples collected on
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the valley bottom while diamonds are samples of the valley side-walls. B) GISP2 §'°0
values (%o) (Stuiver et al., 1995). C) Sea Surface Temperature (SST) deduced from
Mg/Ca sediment record of the Cariaco Basin (Lea et al., 2003). D) Noticeable climatic
episodes in the Mérida Andes deduced from palynological investigations (Based on
Salgado-Laboriau and Schubert, 1976, Salgado-Laboriau et al., 1977, Schubert and
Rinaldi, 1987, Salgado-Laboriau, et al., 1988, Rull, 1998, Dirszowsky et al., 2005).
Cold periods based on GISP2 curves are in grey bands. YD: Younger Dryas, OD: Older
Dryas and OtD: Oldest Dryas.

6. Conclusions

The first deglaciation chronology of the Gavidia valley is based on a coupled TCN
dating and a detailed analysis of glacial landforms. Deglaciation happened in two
separated and identified periods. The first one occurred between the LGM (21 ka) and
the Oldest Dryas stadial (OtD at ~16.5 ka) or El Caballo Stadial. The second shorter
period occurred after the El Caballo Stadial (at ~16.5 ka). Despite moderate topographic
slopes (<7°) along the valley are evidenced, exposures ages point out two modalities of
glacier retreat. During the LGM/OtD-EI Caballo Stadial interval, relatively cold climate
conditions were maintained, leading to low ice retreat (~0.26 km/ka). In contrast, the
glacier extinction occurred by high ice retreat rates of about ~4.7 km/ka. This scheme
disagrees with the Mucubaji valley deglaciation history. In this valley, the glacier seems
to last longer, reaching up to the end of the Younger Dryas. Mucubaji former glacier
experienced intercalation of cold short periods that permitted the development of small
moraine ridges. Local paleoclimate contrasts and different valley orientations could

explain geomorphic and deglaciation histories differences.
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V-2.1.3 Mucuchache valley, El Caballo and Las Tapias moraines
V-2.1.3.1 Geomorphological descriptions and previous studies
Most of the Mucuchache valley is oriented NW-SE. Only at highest accumulation zone
altitudes (> ~ 3700 m), it is NE-SW oriented. Catchments of lateral secondary valleys
drain towards the Chama River. Below ~3500 m, glacial landforms are dominated by
sedimentary features as lateral and frontal moraines, reaching up to 150 m high. Above
around 3500 m, glacial landforms are dominated by erosional features as cirques and
roches moutonnées (Figure V-4). The geomorphological description was proposed by
Gonzdlez and Bezada (2006), but no deglaciation chronology was available. This valley
was selected in order to complete the Sierra Nevada deglaciation history. The '“Be
deglaciation chronology attempted to answer the next scientific questions: What is the
age of the glacier advance identified by the 150 m high lateral moraine? Is it a LGM

glacier advance? How was the deglaciation history?

The NW-SE trending El Caballo moraine complex, next to of the Mucuchache valley to
the NE, extends 1.6 km long and 85 m high oriented NW-SE. This catchment is smaller
than the Mucuchache valley (Caballo area 2.1 km? and the Mucuchache 17.2 kmz) and
also drains toward the Chama River (Figure V-5). Las Tapias moraine complex is
located 10 km to the NE of the Mucuchache valley (Figure V-6) in the Sierra de Santo
Domingo. Las Tapias moraines are separated from the Mucuchache ones by the moraine
complexes of El Caballo, Mucubaji, La Victoria and Los Zerpa, from SW to NE; all
resting on the northwestern slope of the Sierra Santo Domingo. Las Tapias moraine is
0.9 km long NW-SE oriented (Figure V-6). As was mentioned in Los Zerpas, origin of
the moraines in Sierra de Santo Domingo higher than 3000 m was assigned older than
10-13 ka BP (Schubert, 1970, 1972) but no absolute ages were proposed. ''Be
deglaciation chronologies attempted to contribute answering the next scientific
questions: Are these maximum glaciers advances synchronous? How were the glaciers
advances between the dry Chama river comparde to the wet Santo Domingo river

catchments?
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Figure V-4. A) Glacial geomorphology of the Mucuchache valley in the Mérida Andes.
Location of collected samples reported on a digital elevation model (DEM). B)
Characteristic U-shaped valley of La Mucuchache, look at boulders atop right side
moraine crestline (person stands for relative scale). B) Example of a moraine boulder

in La Mucuchache (white arrow indicates sample location).
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Figure V-5. El Caballo moraines in the Mérida Andes. Samples location are the red

dots.

V-2.1.3.2 Exposure ages and outliers
The Mucuchache valley exposure ages range from 5.78+0.71 ka and 36.95+1.58 ka

(Table V-3). Most of analytical uncertainties are lower than 5% which is lower than the
usual published uncertainties range (Balco et al., 2008; Dunai, 2010). MUCUEF-1402 is
the only one sample with an uncertainty higher than 5%. This sample was collected in a
roche moutonnée at 3683 m and it is 5.78+0.71 ka. MUCUF-1402 is located between
MUCUF-1401 18.09 £ 0.86 ka at 3603 m and MUCUF-1403 18.75 £ 0.75 ka at 3704 m
(Figure V-4). In comparison with these surroundings samples MUCUF-1402 exposure
age is inconsistent. It can reflect a post deglaciation event. This roche moutonnée was
not as high as other sampled ones above ground surface. In fact, it is only around 30 cm
high. Although sample was carefully collected, bedrock may have been covered by
debris after deglaciation, which limited the direct impact of the cosmic rays. So, a
minimal '°Be production may have occurred. This sample was considered as an outlier

and was not considered for discussions.
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Exposure ages from the Mucuchache valley rage between 18.09+0.86 ka (MUCUEF-
1401, roche moutonnée) and 36.95+£1.58 ka (MUCU-1403, boulder moraine; Table V-
3). Exposure ages are in accordance with location of sampled landforms; i.e. exposure

ages decrease up-valley.

Geomorphological investigations indicate the presence of more than one lateral moraine
in the Mucuchache valley (Figure V-4). These moraines are difficult to relate to their
respective frontal moraines. The frontal moraines absence could be simply explained by
the Chama river erosion. However, the Quaternary Bocon6 fault movement created the
Mucuchache frontal moraines displacement and alteration. New weakness planes
created in the frontal moraines probably strengthen the Chama river erosion and the
frontal moraines denudation. In the innermost lateral moraine three samples were
collected (Figure V-4): MUCU-1401 25.66+1.39 ka, MUCU-1402 35.48+1.60 ka and
MUCU-1403 36.95+1.58 ka. Considering the last two samples are not significant
different. These two ages are used to stablish the exposure age of this lateral moraine.
Since MUCU-1401 was collected at around 1 m high, exposure age of this boulder can
reflect a post deglaciation process, presumably due to enhanced erosion (spalling). This
process remove bedrock surface and a significant quantity of '°Be is lost. Apparent
exposure age is younger than the real one. Weighted average exposure age of the

innermost lateral moraine sampled is 36.20+1.13 ka (Figure V-4).

As in the Mucuchache valley, in El Caballo moraines complex, some frontal moraines
are absent. These frontal moraines denudation could be explained by the Chama river
erosion and the Quaternary Boconé fault action as was explained to the Mucuchache
moraines. Three samples were collected. Exposure ages are: CABA-1401-30.53+1.42
ka, CABA-1402-33.16£1.51 ka and CABA-1403-27.44+1.14 ka. The last sample
CABA-1403 is significantly different and was rejected in the following. It can reflect
enhanced erosion (spalling) as in the Mucuchache boulder MUCU-1401. A weighted
average exposure age of the outermost lateral moraine is 31.76+1.03 ka (n=2) (Figure

V-5).

Las Tapias moraines are located on the NE flank of the Sierra de Santo Domingo and
appears to be the last most conspicuous moraine to the NE on this side of the Sierra.

Three samples were collected, which are not significantly different (Table V-3). A
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weighted average exposure age from the outermost lateral Las Tapias moraine is

19.028+0.574 ka (n=3).

C{jlacier cirque
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® Moraine
samples
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Figure V-6. A) Las Tapias moraines in the Mérida Andes. Samples locations are

identified by red dots.

V-2.2 Sierra del Norte:
V-2.2.1 La Culata moraines/Mucujiin valley
V-2.2.1.1 Geomorphological descriptions and previous studies

In the Mucujin valley, mainly erosional glacial landforms, as glacial cirques at
elevations between 4000 m and 4500 m are present. At elevations lower than 4000 m,
glacier activity is evidenced by moraines presence (lateral, frontal and terminal) (Figure
V-7). A conspicuous lateral-terminal moraine is located between around 3160 m and
4000 m (moraine 1). This lateral moraine is oriented NE-SW with a length of ~4 km
and ~150 m height (Figure V-7, 1). A geomorphological description of this area was
presented by Schubert and Valastro (1974). They described an altered till outwash

covered by vegetation at 1600 m which was related to the Early Mérida Glaciation.
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Authors presented radiocarbon ages from fluvioglacial terraces, dry lakes and a bottom
moraine from the Mucujun valley. Radiocarbon ages from a soil sample collected in the
terrace upper layer are 3.82 + 0.09 'C ka BP and 4.79 + 0.07 "*C ka BP. Medium
terrace layer ages are 2.41 + 0.08 '*C ka BP, 5.06 + 0.09 *C ka BP and 5.63 + 0.07 '*C
ka BP. The base of the terrace was dated at 3.97 + 0.06 '*C ka BP. Authors indicate ages
are inconsistent because of the young age of the base compare to the others. Authors do
not discuss a possible cause of the ages inconsistency. A moraine located 1 km
southwest of El Saladito was dated at 2.49 + 0.05 “C ka BP (green circle, letter A,
Figure V-7), a sample from the top of dry lake sediments located in a glacier cirque at
4000 m is 5.06 + 0.09 "*C ka BP. The moraine age indicates a glacier advance younger
than 2.5 ka while the lakes age indicates glacier cirque was ice free at least since ~5 ka.
Authors do not explain inconsistency of ages. Based on stratigraphic correlation and
moraines complex alteration features, Schubert and Valastro (1974) correlate La Culata
moraines complexes to the Santo Domingo moraines located between 3000-3500 m.
They related these landforms to the Late Mérida Glaciation with ages younger than 13
ka. However, a question still existed: how old is La Culata conspicuous moraine? To
answer this question and contribute to better constrain glacier advances in the Sierra del
Norte, La Culata moraines complexes was selected to date. Seven samples were
collected along the lateral-terminal moraine (Figure V-7; Table V-3). Five other
samples were collected in smaller secondary lateral-terminal moraines with a NW-SE

orientation (Figure V-7, 2, 3; Table V-3).

V-2.2.1.2 Exposure ages and outliers
Exposure ages for the samples collected at La Culata range from 16.01+0.65 and

22.36+2.64 ka (Table V-3). Exposure ages uncertainties are in general lower or close to
10%. Only sample CU-1310 (22.36+£2.54 ka) was significantly different and older
compare to its neighbor sample CU-1311 (17.78+0.78 ka). According to the location of
the sampled moraine 2, it would be at least of the same age or younger than moraine 1
(Figure V-7, Table V-3). Weighted average exposure age of moraine 1 is 17.02 + 0.35
ka (n=7). This weighted average age considered CU-1301, CU-1302, CU-1303, CU-
1304, CU-1305, CU-1306 and CU-1309 ages which are not significantly different
(Figure V-7, Table V-3). Therefore, CU-1310 suggests a significant '’Be inheritance
due to complex exposure history of the boulder before its abandonment (i.e. during the

glacier transport and /or stay in up-valley landforms). CU-1310 was considered as an
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outlier and it was not considered in the following. Exposure age of moraine 2 is
17.78+0.78 ka (n=1). Weighted average exposure age of moraine 3 is 17.94 + 0.47
(n=3, CU-1312, CU-1313 and CU-1315; ages not significantly different). Moraines 2
and 3 are related to secondary glacier valleys oriented NW-SE. TCN ages data set
suggest a major episode of ice withdrawal during the same period leaving behind the
entire set of glacial landforms studied (1 through 3 in Figure V-7). The
geomorphological study of this area reveals the presence of several other moraines,
which suggest a deglaciation interrupted by different glaciers stops and advances,

within the overall trend of ice withdrawal.

Cirque glacier ~ Laka

——Moraine ® Moraine samples

Figure V-7. La Culata moraines complexes in the Mucujin valley (Sierra del Norte). In
vellow circles moraines 1, 2 and 3 and samples collected for this dissertation. In green
circle, letter A, chronological data in a moraine at 3600 m elevation from Schubert and

Valastro (1974).

V-2.2.2 Mifafi valley and El Desecho moraine

V-2.2.2.1 Geomorphological descriptions
In the Sierra del Norte, developments of depositional glacial landforms are not as well

developed as those of the Mucujin valley where are located La Culata moraines
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complexes (Figures V-1 and Figure V-7). Glacial landforms are mainly dominated by

erosional features as glacial cirques at elevations higher than 4000 m (Figure V-8).

1.6 km

é Glacier cirque

\ Moraines

@ Moraine Bedrock
samples samples

Figure V-8. A) Mifafi valley and El Desecho moraines in Sierra del Norte. Samples

locations are the red and yellow dots (moraines and bedrock samples respectively). B)
View of the El Desecho moraine ridge. C) Moraine boulder sampled in El Desecho
moraine (DESE-1401).
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Six samples were collected along the Mifafi valley (Figure V-8; Table V-3). At around
4080 m is located an around 300 m high pegmatite dome. This pegmatite dome allows
studying a vertical deglaciation profile. This valley presents two main orientations with
N-S orientation for the lower section (< 4000 m) and NE-SW orientation for the higher
section (> 4000 m, peak at 4588 m). Slopes are lower than 7%. In the low section, a
lateral moraine is located below 3863 m (2.8 km long and N-S orientation) (Figure V-
8A- Table V-3). Three boulder samples were collected along its crestline. No previous
deglaciation chronology was available for the Mifafi valley. This valley was selected to
study a deglaciation history in the Sierra del Norte and compare to others from the
Sierra Nevada. How was the glacier dynamic in this valley? Is there any difference in
comparison with the Gavidia valley which has a similar accumulation zone in the Sierra
Nevada? These were the scientific questions made and answered based on the

deglaciation chronology obtained.

El Desecho lateral moraine is located south of the Mifafi valley, it is ~ 1 km long and
NE-SW oriented (Figure V-8B, C; Table V-3). This moraine was studied to date glacier
advances in Sierra del Norte and contribute to answer: How compares glaciers advances

of Sierra del Norte with Sierra Nevada? Were advances synchronous or asynchronous?

V-2.2.2.2 Exposure ages and outliers
The Mifafi valley age results at the pegmatite dome range from 16.52+1.45 to

19.194£2.05 ka (Table V-3; Figure V-8A). Exposure ages from the Mifafi lateral
moraine are between 17.32+1.01 and 19.70+1.52 ka (Table V-3; MIF samples in Figure
V-8). The El Desecho lateral moraine results range between 17.70+0.98 and 21.78+3.09
ka. Exposure ages are not significantly different. El Desecho weighted average exposure
age is 17.97+0.58 ka (n=3) (Table V-3; DESE samples in Figure V-8). Analytical
uncertainties including AMS measurement and Cronus computation are low (lower than
~10%). There is no significant difference between the moraine MIF exposure ages
(located below 3863 m) and inside the Mifafi valley close to the pegmatite dome (Do-
07-09) (Figure V-8).
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V-2.3 Cordillera de Trujillo (Pueblo Llano valley/La Canoa)
V-2.3.1 Previous studies
These glacial landforms are located in the northernmost east (NE) of the study area
(Cordillera de Trujillo) at lowest elevations (2500-2900 m) (Figures V-1 and V-9).
Glacial chronologies from the RF3 section (based on OSL ages) in La Canoa moraine
established a MIS 5 (early Mérida Glaciation) and a LGM (late Mérida Glaciation)
glacier advance (Mahaney et al., 2000; Figure V-9). Ages assigned were 81+15 ka and
younger than 26%2 ka, respectively. In the Pueblo Llano valley a north-south oriented
lateral outwash fan was proposed (Vivas, 1979; Bezada, 1989; Figure III-5). However,
Guzmén, (2013) proposed these landforms as frontal moraines based on a
geomorphological and sedimentological description. These moraines are located at 2467
m and date 17.32+1.72 ka (based on 10Be dating; Guzmdn, 2013). Schubert (1974)
localized the late Mérida Glaciation landforms (13-25 ka) at elevations between 2900-
3500 m. Recent moraine dating (Guzmdn, 2013) emphasize the requirement of new

research to precise the Mérida Glaciation chronology in the Cordillera de Trujillo.

Pz ' I L
i: Glacier cirque
= \ Moraines

Moraine
e samples 0.65 km

Figure V-9. La Canoa and Pueblo Llano moraines. Studied Pueblo Llano moraines are

the yellow numbers. Samples locations are in red dots.

173



The scientific questions made for this valley were: Is La Canoa moraine younger than
26 ka sensus stricto related to the LGM as suggested Mahaney et al., 20007 Is there any
previous MIS 2 glacier advance different from the RF3 section detected in the Pueblo
Llano valley? The study of this area was significantly contributed to elucidate if MIS 2
or late Mérida Glaciation glacier advances arrived at elevations lower than currently
recognized. Also, the study of the Pueblo Llano valley is important because evidences

of previous MIS 2 glacier advances could be found.

V-2.3.2 Glacial geomorphological features
Glacial cirques are located between 3400-3800 m, whereas depositional glacial

landforms (moraines) are between 2300-3200 m (Figure V-9). La Canoa lateral-terminal

moraines are E-W in orientation and ~1.4 km long and ~40 m high (Figure V-9).

A detailed geomorphological description of the Pueblo Llano valley was published by
Bezada (1989; Figure III-5). Outwash fans were interpreted close to la Capellania and
El Pozo (green rectangle in Figure V-10 C). Two ridges constituted by a diamicton
material are developed between the outwash fans (Figure V-10 A, B, D). These ridges
which are easily observed both on field and on aerial photography are more altered and
discontinuous than those of La Canoa. In the present study, these ridges are proposed as
the Pueblo Llano moraines (Figure V-10). Moreover, it is important to note that the

Pueblo Llano area is strongly influenced by anthropic activity (Figure V-10 E).

Moraines 1 (samples PL-1408, PL-1409, PL-1410) and 2 (PL- 1405, PL-1406, PL-
1407) are N-S oriented. These moraines are 0.9 km 1.4 km long respectively. Moraine 1
is deformed toward La Capellania town and seems to indicate a stress which changed
the original ridge orientation. This stress seems to be orientated almost E-W along the
Pueblo Llano valley. Guzman (2013) proposed the presence of frontal moraines through
the Pueblo Llano valley axis close to La Capellania. This suggests a glacier activity in
the Pueblo Llano valley with an E-W orientation during the Late Pleistocene. Thus,
moraine 1 deformation could be related to a glacier deformation during younger glacier

advance.
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Figure V-10. Pueblo Llano moraines with A) Moraine 2 and B) Moraine 1. C)

geomorphological map (Bezada, 1989). The green rectangle localizes the outwash fans
described by Bezada (1989). D) View of moraines in aerial picture mission A-34. E)

Anthropogenic impact in the Pueblo Llano moraines (Google Earth image).

V-2.3.2 Exposure ages and outliers
La Canoa exposure ages vary from 17.57£1.55 to 18.21+1.55 ka (n=2) and Pueblo

Llano moraines from 45.73+1.80 to 86.66+3.37 ka (n=6; Table V-3).
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Weighted average exposure age of La Canoa moraine is 17.89 = 1.09 ka (n=2).
Exposure ages for moraines 1 and 2 in the Pueblo Llano valley are more scattered and
significantly different and older (Table V-3). It is important to consider the strong
anthropogenic impact (agriculture activity) on these moraines. Moreover, moraines
boulders are not as big as those observed in other moraines (Table V-3). Exposure ages
from the moraine 2 (weighted average 71.96 + 1.74 ka) and moraine 1 (weighted
average 50.33 + 1.15 ka) suggest that both ridges seem to be related to different glacier
advances. These glacier advances seem implied a former glacier E-W oriented along the

Pueblo Llano valley, apparently retreating eastward.

V.3.0 Paleo ELA values

V- 3.1 Previous studies
Schubert (1974) and Schubert and Valastro (1974) suggest, based on a constant

elevation of the lowest cirque floor, a late Pleistocene snowline of 3500 m for most of
the Venezuelan Andes. This value was not assigned to a specific time. Lachniet-Selem
(2005) determined ELA;jgym using the toe-to-headwall-altitude ratio (THAR) method,
accumulation area ratio (AAR) and accumulation area balance ratio (AABR). The AAR
and AABR methods are explained in Section IV-7.0. THAR method is based on the
empirical observation that the firn (material between fresh snow and glacier ice) limit
on temperate glaciers at the end of the ablation season is often located at a halfway
altitudes between the head of a glacier and its terminus (Porter, 2001). THAR method
considers that not all glaciers have the same behavior and the paleo ELA is located at an
elevation lower than the median altitude between the head of a glacier and its terminus.
Lachniet-Selem (2005) drew former glaciers surface using frontal and lateral moraines
from the Mucubaji valley and La Victoria and La Canoa terminal moraines. Lachniet-
Selem (2005) assigned the Mucubaji frontal moraine to a LGM glacier advance based
on Schubert and Rinaldi (1987) (details in section V-2.1.1). La Canoa moraine was
related to the LGM based on Mahaney et al. (2000) chronology (details in section V-
2.3). Mahaney et al. (2000) suggested ages younger than 26 ka. Lachniet-Selem (2005)
related La Victoria former glacier to a LGM glacier advance presumably based on a
correlation to the beside Mucubaji valley. ELA g (BR=1.8) are thus calculated for
Mucubaji (3836 m), La Victoria (3719 m) and La Canoa (3439 m). Whereas for a BR of
4.0, ELA;gm are 3760, 3604, and 3364 m respectively, with an average ELA|gv of
3576 + 163 m.
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Stansell et al. (2007) determined ELA; gy for former glaciers from Sierra del Norte,
Northern and Southern Sierra de Santo Domingo. Authors used AAR (ratios from 0.66
to 0.86) and AABR (ratios from 5 to 15) methods. Chronology data to support all the
glacier landforms related to the LGM was not presented. ELA; gy in Sierra del Norte
were estimated from 3880 to 4030 m. In the northern Santo Domingo ELA; gy were
estimated from 3590 to 3725 m. In the Southern Santo Domingo values were from 3210
to 3505 m.

All the previous studies mainly determined paleo ELA for the LGM. But are all the
glacier landforms used precisely related to the LGM? What is the paleo ELA at times
different from the LGM? Glacial landforms related to the LGM are not extensively
based on a robust chronological data. The lack of robust chronological data produces
wrong paleo ELA interpretations. Moreover, in a frame of methodological development,
it can be interesting to evaluate if glacier thickness calculations (Ben and Hulton, 2010)
provide more accurate paleo ELA values. To answer these questions, paleo ELA
determinations were made at different ages in the central MA, based on the chronology

obtained in this dissertation.

V- 3.2 Results
Since AAR and BR ratios for tropical glaciers are not well constrained (e.g. Smith, 2005

and Rea et al., 2009), calculations were performed for various ratios range. Published
ratios for tropical glaciers from Kaser and Osmaston (2002) and Stansell et al. (2007)
were used (AABR: 5, 10; AAR: 0.73, 0.82) (Tables V-4 and V-5).

Table V-4. Paleo ELA values (m a.s.) computed for the Mucuchache valley former

glaciers and for different basal shear stresses (Table 5).

Paleo ELA (m)
Basal shear Stress AABR AAR
(kPa) Deglaciation age (ka) 5 10 0.73 0.82
50 3730 3630 3730 3630
100 36 3780 3730 3830 3730
150 3831 3781 3931 3831
50 3857 3807 3857 3807
100 20 3907 3857 3957 3857
150 3957 3907 4007 3907
50 3930 3880 3930 3880
100 18 3980 3930 4030 3980
150 4030 3980 4080 4030
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Table V-5. Paleo ELA values (m a.s.l) calculated based on AABR and AAR methods
(Porter, 2001 and Benn et al., 2005) using GIS tools from Pellitero et al. (2015). Since

no significant differences were observed between both methods, weighted average paleo

ELA are presented.

Weighted
AABR AAR Average
Paleo ELA

Valley or moraine Latitude Longitude 5 10 0.73 0.82 (m)
Mucuchache 36 ka 8.78° -70.86° | 3780+51 3714+77 | 3830+101 3730+101 | 3765437
Mucuchache 20 ka 3907+50 3857+50 | 3940+76 3857 +50 | 3882+27
Mucuchache 18 ka 3980 +50 3930+50 | 4013+76 3963 +76 | 3965+30
Caballo 30 ka 8.80 ° -70.82° | 3847+50 3797+50 | 3897+50 3830+29 | 3839+20
Mucubaji 22 ka 8.79 ° -70.84° | 3812+77 3762477 | 3862477 3795+77 | 3808+39
Mucubaji 18 ka 3887450 3820429 | 3887450 383750 | 3845420
Mucubaji 16 ka 3907+29  3857+29 | 3907+29  3857+29 | 388215
Victoria 18 ka 8.81° -70.80° | 3677+30 3610+59 | 3760+78 3627+78 | 3669+24
Zerpa 17 ka 8.81° -70.79° | 3686+51 3586+51 | 3803+30 3586+51 | 3665+89
Mifafi 18 ka 8.88 ° -70.87° | 4405+76 4372450 | 4439+76  4405+76 | 4397 +33
La Canoa 17 ka 8.93° -70.69° | 3475+76 3392450 | 3592450 3442450 | 3475 +27

Paleo ELA calculations involve the reconstruction of former glacier surfaces and
thicknesses (see Section IV-6.0). However, former glaciers thicknesses could involve
significant uncertainties. In main cases, field landforms allowing the estimation of
glacier thickness are scarce or eroded (moraines and outwash, trimline, etc.). Moreover,

sampling along vertical profiles is rarely performed.

Glaciers thicknesses are related to the basal shear stress and current glaciers flows with
a basal shear stress between 50-150 kPa (Paterson, 1981). Thus, glaciers thicknesses
were calculated considering this shear stress range using the excel spreadsheet from
Benn and Hulton, (2010) (see Methodology section IV). Three paleo ELA values were
obtained considering the specific ratio (50, 100 and 150 kPa) (Table V-4). An average
paleo-ELA with one standard deviation (c) was calculated for each former glacier at a
specific age and ratio (e.g. for Mucuchache valley at 36 ka and AABR of 5, average
ELA was obtained considering paleo ELA to 50, 100 and 150 kPa: 3730 m, 3780 m and
3831 m, respectively) (Table V-4, Table V-5). Former glaciers were drawn based on

chronological data and geomorphology.

Paleo ELA values obtained using different AAR (0.73/0.82) or AABR (5/10) ratios are
not significant different when comparison to a specific valley and age is made (Table V-
5). For example, for the Mucuchache valley at 36 ka, paleo ELA are 3780 + 51 and
3730 £ 77 m at AABR of 5 and 10, respectively, whereas at AAR of 0.73 and 0.82 are
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3830 = 101 and 3730 + 101 m, respectively. Paleo ELA from the Mucuchache valley at
36 ka are not significantly different. Therefore, weighted averages paleo ELA values are
presented (Table V-5). These values range between 3475427 from La Canoa moraines

at ~ 17 ka m until 4397433 m from the Mifafi valley at ~ 18 ka (Figure V-11).
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Figure V-11. Paleo ELA variations in different valleys and moraines studied in the
central Mérida Andes last 36 ka.

In the Sierra Nevada, paleo ELAs are more consistent for periods older than 30 ka
(Mucuchache 3765+37 m and El Caballo 3839+20 m) (Table V-5), as well as for 20-22
ka (Mucuchache 3882427 m and Mucubaji 3808+39 m). However, strong paleo ELA
differences exist between Sierra Nevada and Sierra de Santo Domingo (e.g. at 18 ka

Mucuchache ELA=3965+30 m and La Victoria ELA=3669+24 m).
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PART III. SECTION VI DISCUSSIONS

A difference between the glacial landforms formation age (moraine construction,
bedrock surface erosion by glacier abrasion) and the glacial landform deglaciation age
assessed by TCN exposure dating exists. Exposure ages, deglaciation ages or
abandonment ages represent time since the sampled landforms were ice-free. Exposure
ages represent valuable markers for the interpretation and reconstruction of glaciation
periods and paleoclimate. Despite the observation of low erosion in the field (glacial
striation and polished surfaces are present), potential post-deglaciation processes could
slightly erode the original surface. Thus, exposure ages are assumed as minimum ages
(Nishiizumi et al., 1989; Briner and Swanson, 1998; Siame et al., 2000; Gosse and
Phillips, 2001; Dunai, 2010; Balco, 2011).

When climate conditions provide positive mass balances, glaciers advance and build
ice-marginal moraines (Hughes et al, 2005; Bennet and Glasser, 2009; Kirkbride and
Winkler, 2012). Moraines deglaciation occurs during a period with negative mass
balances. A time lag could happen between glacier advance and deglaciation. This time
lag is assumed as a minimum, considering the sensitive response of the tropical glaciers
to climate changes (Kaser and Osmaston, 2002). This minimum time lag is difficult to
quantify. The accelerated retreat of the current tropical Andean glaciers occurred at the
same time as a major increase in the global temperature curve after 1976 (Rabatel et al.,
2013). It seems to indicate tropical glacier response to climate changes occurs in some

years, in a decade.

This discussions section is subdivided in three main parts: VI-1) Deglaciation histories
and parameters that control different former glaciers dynamics, with a focus on
geomorphic and topographic features. To discuss in this subsection, the more
complete deglaciation histories were selected (from the Mucubaji, Mucuchache,
Gavidia and Mifafi valley). VI-2 Implications of the deglaciation chronologies in the
glaciations reconstructions. This subsection presents an analysis of glaciers advances
(geographical distribution, timing and integration with data from other studies). VI-3
Our paleoglaciology contributions to the paleoclimate record and comparisons
with the local, regional and global paleoclimate proxy records. Paleoclimate

inferences and its influence on the former glaciers dynamics are discuss. This analysis
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was realized based on the paleo ELA interpretations, in comparison with GISP 2 and

Cariaco basin paleoclimate proxy records.

VI-1 Deglaciation histories in the central Mérida Andes and principal geomorphic
parameters driving the former glaciers dynamics

Deglaciation chronologies along the Gavidia, Mifafi, Mucuchache and Mucubaji valleys
are detailed and discussed. The TCN ages and previous published data allow proposing
new complete deglaciation records in several valleys of the central part of the Merida

Andes (MIS 1-MIS 3).

VI-1.1 Deglaciation histories in the central Mérida Andes
VI-1.1.1 Mucubaji valley (Sierra Nevada)
Updated exposure ages with SLHL production rate recently published (Kelly et al.,
2013) are significantly different from the original values previously published
(Carcaillet et al., 2013). The exposure ages indicate a negative relation with elevation
(see details in Carcaillet et al., 2013, section V-2.1.1, this issue, Figure 3A).
Deglaciation began before 21.5+1.3 ka, considering three moraines lower than around
3600 m were observed in a recent geomorphological interpretation (Figure VI-1).
Glacier extinction occurred at ages younger than 11.0+0.4 ka (modified ages from
Carcaillet et al., 2013). Mucubaji valley is characterized by noticeable moraine
developments in the flatter lower valley (Level 1 to Level 5, Carcaillet et al., 2013,
section V-2.1.1 Figure 2B). At elevations higher than ~3700 m moraines are not as
evident as those of the lower area (Level 6, Carcaillet et al., 2013, section V-2.1.1
Figure 2B). The construction of massive moraines could have been more difficult
because of preexistent high valley bottom steepness (~20°). At higher valley bottom
steepness, till stabilization in the glacier margins was not as effective as in the flatter
areas. Till deposition and moraine stabilization could be limited by the gravity force
influence which leads till sediments fall down. Smaller moraines at higher elevations
could be also related to smaller glacier areas at younger times, which controls till
sediments supply. The erosion of a smaller glacier produces smaller quantities of till
sediment, thus smaller moraines could be related. Finally, smaller moraines
developments at higher elevations could be related to short periods of glacier
stabilization with climate. Rapid changes between cold and warm climate conditions

make difficult and even prevent the ice-marginal moraines stabilization and large
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developments. It is important to note that small moraines at elevations higher than 3700
m form around 12.50 ka. These moraines could be related to the Younger Dryas (YD),
the short and cold period between 12.85 to 11.65 Cal kyr BP (Blunier et al., 1998).
However, it is difficult to relate to it all the moraines with elevation differences between
them of as much as 400 m. The YD is close to the Late Pleistocene-Holocene transition,
a period of climate change. It is possible that this period in the Mucubaji valley was
characterized by fast climate changes to induce multiple glacier advances in this short
period. It is necessary to perform more paleoclimate studies in the central MA focusing
in the YD. Based on the Mucubaji valley geomorphological features, glacier dynamics
between the LGM and Late Pleistocene/Early Holocene (~11 ka) were characterized by
successive stages of glacier stop-advance; all being part of an overall glacier

withdrawal.
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Figure VI-1. Glaciers advances in the Mucubaji valley. Maximum glacier advance is
related to a frontal moraine below moraine Level 1, originally assigned by Carcaillet et
al. (2013). Moraines were signaled based on ridges morphology along moraines level 1
and level 2. Also interpretations are made based on field observations. Moraines 1-3

numbers do not have an age connotation (Modified from Carrillo, 2000).

In the Mucubaji valley the maximum glacier advance is related to a damaged frontal

moraine at elevations lower than 3589 m (lower elevations than Level 1, moraine
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number 3, Figure VI-1). A new geomorphological interpretation of aerial photographs
realized in this dissertation shows three additional frontal moraines (lower elevations
than Level 1, moraines labelled 1, 2 and 3, Figure VI-1). These moraines are located
below the most external frontal moraine dated by Carcaillet et al. (2013) (moraine level
1, Figure VI-1). It suggests the maximum glacier advance happened at ages older than
22 ka. Considering that no significant exposure ages differences between moraines level
1 and level 2 are observed (Figure VI-1, Table V-3), the maximum glacier advance
seems not to be much older than 22 ka. It occurred maybe during the same local LGM
(defined between 22.75 and 19.96 Cal ka BP, Schubert and Rinaldi, 1987). Exposure
ages from moraines level 1 and 2 correlates with previous radiocarbon dated outwash
fan located at 3400 m. This outwash fan is located moraine level 1 down valley and has
a basal age of 19.08+0.82 "C kyr BP (Schubert and Rinaldi, 1987). To form the
outwash fan, it was necessary to have the moraine developed at an elevation higher than
3400 m. Moraine level 1 needed to be older than 19 ka (it is 21.5+1.3 ka). TCN
exposure ages data presented a deglaciation history until the Pleistocene/Holocene
transition. The Holocene activity of the Mucubaji glacier seems to have occurred at least
until 6.25 cal. kyr BP (5.4620.40 "C kyr BP ka from aquatic moss, Stansell et al.,
2005). This glacier activity was deduced from the Laguna de Mucubaji sediment
descriptions, characterized by low clastic content and low magnetic susceptibility
(Stansell et al., 2005; Carrillo, 2006; Carrillo et al., 2008). A more recent glacier
activity seems occurred between (0.64+0.05 '*C kyr BP) 0.61 Cal. kyr BP and 0.13 Cal.
kyr BP (Stansell et al., 2005).

The correlation between exposure ages and elevations allows estimating glacier front
retreat rates (Mucubaji article, Figure 3B). Glacier retreated in two distinct periods
(Carcaillet et al., 2013). The oldest one occurred between the LGM and the Late Glacial
(~15 ka). Ice retreat rate was estimated at ~25 m/ka (Carcaillet et al., 2013). The second
one occurred between 15 ka and the Early Holocene (~11 ka). Ice retreat rate was ~310
m/ka. In addition, Late Pleistocene/Early Holocene climate change seems to prevent

glacier development and produced a faster glacier retreat (Carcaillet et al., 2013).

VI-1.1.2 Mucuchahe valley (Sierra Nevada)
Mucuchache valley deglaciation ages range between 18.09+0.86 ka (MUCUF-1401)

and 36.95+1.58 ka (MUCU-1403) (Table V-3). Results show a normal trend, with

exposure ages decreasing up-valley. Geomorphological interpretation shows more than
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one lateral moraine ridges, whose relation to their corresponding frontal moraine is
unavailable (Figure V-4). Frontal moraines are absent. The Quaternary Boconé fault
and Chama River activities could have erased the frontal moraines (see details in results
section V-2.1.2). A weighted average exposure age from the innermost lateral moraine
indicate deglaciation and maximum glacier advance happening at ages older than
36.20+1.10 ka (n=2) (Figure V-4). Exposure age from the bottom valley indicate that

glacier extinction happened at ages younger than ~18 ka.

A gradual glacier retreat could be deduced from the deglaciation chronologies. Between
late MIS 3 and MIS 2 the glacier retreated at ~0.25 km/ka in the Mucuchache valley.

The available data set does not allow proposing a more detailed ice retreat rate.

VI-1.1.3 Gavidia valley (Sierra Nevada)
Discussions on the deglaciation chronologies in the Gavidia valley, read the Gavidia

article in section V-2.1.2. Gavidia article 5. Discussion- 5./ Deglaciation history in the

Gavidia valley.

VI-1.1.4 Mifafi valley (Sierra del Norte)
Exposure ages of lateral moraines indicate the beginning of the ice retreat at around 17-

18 ka (Figure V-8, Table V-3). The Mifafi valley presents a regular slope along the
valley bottom (~ 7°). Glacier retreated quickly at ~7 km/ka. This quickly ice retreat rate
could be related to the very flat topography of the valley bottom. Vertical ELA
variations in flatter valleys imply a significant accumulation zone areas variation (Kerr,
1993; Pedersen and Egholm, 2013). Accumulation zone areas are obtained from the
hypsometric curves of former glaciers. A former glacier hypsometric curve is a graphic
representation of the elevations distribution of the former glacier surface. This curve is
obtained using the Cumulative area in the “x” axis and the Elevation in the “y” axis.
Cumulative areas are summed until 100%. The area at elevations higher than the ELA

indicates the accumulation zone proportion. In the Mifafi valley, the accumulation area

of the former glacier at around 17 ka was 20% (Figure VI-2).
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Figure VI-2. Hypsometric curves of former glaciers. Accumulation zone proportions are
in general between 55-70%. The lowest value is related to the Mifafi former glacier at
17 ka.

The paleo ELA in the Mifafi valley is the highest at 4397+33 m (Figure VI-2). Paleo
ELA differences could indicate different paleo precipitations, which could have been
the lowest in the Mifafi valley. The Mifafi valley has a particular accumulation zone
aspect (NE-SW) which receives more insolation. Accumulation zone receives the sun

radiation longer time, which induces faster ablation rates. This lowest accumulation
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zone area proportion, flat slopes, low paleo precipitations and accumulation zone aspect
with more insolation produced the fastest ice retreat rate. Considering the ice retreat rate
and horizontal distance between headwall and samples collected in the pegmatite dome
(3.4 km, Figure V-8), complete deglaciation (i.e. glacier extinction) occurred at ~17 ka.
Indeed, the glacier thinning occurred quickly as could be suggested by the insignificant
difference between the highest sample collected in the pegmatite dome (Do-0309,
18.241.1 ka, 4172 m) and the valley axis (Do-0709, 17.8+1.6 ka, 4081 m). The glacier

thinning (~100 m) occurred in few decades to hundreds of years.

VI-1.2 Non climatic parameters driving different dynamics of the former glaciers
The geomorphological description of the different valleys indicates the presence of

glaciers cirques, striated bedrocks, polished surfaces and “roches moutonnées” (see
geomorphological descriptions, in results section). These geomorphological features
suggest that all studied former glaciers had warm-based thermal regime (Bennet and
Glasser, 2009). Temperatures in the base of the glaciers define the thermal regime.
Thermal regimes could be warm and cold. In warm-based glaciers melt water is released
at the base of the glacier and the glacier abrasion is significant (Bennet and Glasser,

2009).

The noticeable moraines developments and preservation (between 50-150 m of apparent
height) in the area formed by the Mucubaji, Mucuchache and El Caballo can be related
to the wide plain where moraines were deposited. This wide plain has low bottom valley
slopes (~ 5°) and is observed from the Mucubaji until the Mucuchache valley (Figure
VI-3 B). Toward the Santo Domingo river catchment (between Victoria and Las Tapias
catchment), slopes are also low around 5-7° (Figure VI-3 D). In contrast and despite the
low bottom valley slopes, the Mifafi and the Gavidia valleys do not drain towards a
large plain as the one described in the Mucubaji or Mucuchache valleys (Figure VI-3 A,
O).
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Figure VI-3. Field slopes inferences in areas from the Sierra Nevada and Sierra del
Norte based on contours density. Very close contours involve field slopes higher than
fields with more open contours. A) Mifafi valley. B) Plain close to the Mucubaji valley.

C) Gavidia valley. D) Sierra de Santo Domingo (La Victoria, Los Zerpa and Las Tapias

moraines).
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Glaciers in the central Mérida Andes had different glacier dynamics since MIS 3.
Abrupt or gradual glaciers extinctions occurred in the same mountain range. In the
Mucubaji and the Mucuchache valleys, glaciers retreated gradually. In the Mucubaji
valley glacier existed between the LGM until the Holocene at least at around 6 ka. In
the Mucuchache valley glaciers lived from MIS 3 at least to the LGM-OtD. In the
Gavidia valley glacier retreated at slow ice retreat rates between 21 to 16.5 ka. In the
Mucuchache valley upper area, in the vicinity of glacier cirques, the deglaciation
chronology is unavailable. The history before 18 ka is not documented to describe the
modality of post-LGM glacier retreat. In contrast, glacier evolutions after 16.5 ka in the
Gavidia and at 17-18 ka in Mifafi indicate the fastest ice retreat rates (between ~ 4-7
km/ky). Former glacier extinctions occurred during a period as long as 0.5-1 ky.
Gavidia and Mifafi valleys have similar geomorphic features such analogous cirques
topography, NE-SW orientation of the accumulation zone. The configuration is thus
more suitable to receive more solar radiation in comparison to the NW-SE accumulation
zone orientation and cirques shapes of the Mucubaji and Mucuchache. At least,
insolation radiation differs at regional scale with lower radiation in northern Sierra

Nevada hillside (Mucubaji and Mucuchache valleys).

Another important factor which could control glacier dynamic is related to the
accumulation zones areas. A comparison of these areas is made using the hypsometric
curves of the former glaciers at 17-18 ka. Mucubaji, Mucuchache and Mifafi curves
were compared (Figure VI-2). Accumulation zone proportions in valleys from Sierra
Nevada were between 60-70% whereas in Mifafi was lower than 20%. Low
accumulation zones areas also controlled the rapid glacier extinction in the Mifafi

valley.

Morphometric features as glaciers bottom valleys slopes, accumulation zones
topography (glaciers cirques with steep walls), proportions and aspect (orientation), are
parameters which control glaciers dynamics. Climate conditions which control glaciers

dynamics are discussed in section VI-3.
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VI-2 Deglaciation chronologies and glaciation reconstructions implications in the
central MA

Possible evidences of the previous MIS 5 glaciers advances have been observed in the
Sierra del Norte-Sierra Nevada (Chama, Mucujin valleys at 2600 m), close to
Cordillera de Trujillo (Aracay valley) and Sierra Nevada-Sierra de Santo Domingo
(Santo Domingo valley). These previous MIS 5 glaciers advances are suggested from
diamicton outcrops (Schubert, 1984). In Mesa del Caballo (~3500 m, Figure VI-4),
Mahaney et al. (2010a) evidenced two previous MIS 5 glaciers advances, based on
analysis of mineral composition and weathered state of light and heavy minerals
between till layers. The sharp contact between two glaciers advances (named LAG 4
and 5) indicated, a hiatus of unknown length of time. Authors indicate the studied LAG
sections are below PED 5 section which was dated until around 60 ka (Mahaney et al.,
2001). However, a stratigraphic correlation to corroborate LAG sections stratigraphic
positions and ages is not present. LAG sediments relation to a previous MIS 5 glacier

advance must be clarified.

The oldest evidence of the Early Mérida Glaciation (MIS 5) is identified in La Canoa
moraine (RF3 section, ~2800 m) from analysis of glaciotectonized diamict dated at 81
ka (Mahaney et al., 2000). The PED 5 till material underlying peat (~60 ka) is related to
the MIS 4 glacier advance in the Mesa del Caballo at ~ 3500 m (Mahaney et al., 2010b).
In this work, MIS 4 glacier advance has been identified from the frontal moraine in the

Pueblo Llano valley (moraine 1, ~2500 m) at 71.96+1.74 ka (Table VI-1).

189



ka MIS T
S

Figure VI-4. A) Glaciers advances in the central Mérida Andes. RF3 is La Canoa
section where Mahaney et al. (2000) defined a MIS 5 glacier advance. PED section in
Mesa del Caballo defined MIS 4 and MIS 2 glacier advances (Mahaney et al., 2010a).
LAG section in Mesa del Caballo defined glaciers advances previous to MIS 5
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(Mahaney et al., 2010b). B) Glacier advances in the Cordillera de Trujillo. C) Glacier
advances in Sierra Nevada-Sierra de Santo Domingo. D) Glacier advances in La

Culata, Mucujiin catchment. Exposure ages of different moraines are in Table VI-1.

Table VI-1. Glaciers advances deduced from frontal/lateral moraines weighted average
exposure ages. Glaciers advances are inferred older than exposure ages presented but
inside MIS 3. * ** **% Weighted average exposure ages using updated values
determined with '°Be production rate (Kelly et al., 2013). Original values from: *
Carcaillet et al. (2013), ** Wesnousky et al. (2012) and *** Guzmdn (2013).

Elevation
Location Moraine Age (m) Stage
ZERPA* 18.30.5 3100
VICTORIA** 17.540.5 3140
TAPIAS 19.020.6 3100
MUCUBAJI A 21.5%1.8 3589 a
< MUCUBAJ{ B 19.9+0.8 3620 =

< MUCUBAJI C 18.5+1.3 3572

E MUCUBAJI D 15.8+0.6 3615

< MUCUBAIJI E 17.120.9 3620

.

7 MUCUBAI{ F 12.0£1.0 3862 I
MUCUBAJI G 11.840.5 3982 =
MUCUBAIJI H 12.5+0.9 4212

CABALLO 31.8+1.0 3600 -

MUCUCHACHE 36.2+1.1 3400 =
. CULATA 1* 16.920.2 3160
o CULATA 2 17.8+0.8 3500 «
~ & CULATA 3 17.90.5 3300 §
@ z CULATA 4 ** 15.840.4 3400
« DESECHO 18.0+0.6 3550
<0 CANOA 17.9+1.1 2850 a
% 5 PBLLANO3#*#* 17317 2467 =
=5 PBLLANOI 50.3+1.2 2500 MIS 3
=
S m
oA PBLLANO? 72.0+1.7 2500 MIS 4

MIS 3 glacier advances were recorded at different locations of the Sierra Nevada and

Cordillera de Trujillo (Figure VI-4, Table VI-1). 1) At ~50 ka in the Pueblo Llano

191



valley at ~2500 m, 2) between 30-36 ka in Sierra Nevada in the Mucuchache valley and
El Caballo (~3400 m and ~3600 m respectively). Because of lateral moraines are not
related to frontal moraines, accurate glacier advance ages are difficult to achieve. An
age difference between lateral and frontal moraines in the Tatra Mountain was 3 ky
(Makos et al., 2014). The Caballo and Mucuchache glacier advances are older than the
TCN ages determined from the lateral moraines sampled. However, considering results
from Makos et al. (2014) glacier advances occurred during the same MIS 3. Undated
lateral moraines parallel to the dated Mucuchache valley moraine, have been related to
glaciers advances older than around 36 ka (moraines interpreted in the
geomorphological descriptions, Results section V-2.1.3) (Figure V-4 and Figure VI-4).
These moraines could be related to MIS 3 glaciers advances based on its ridges
appearance (shape and alteration). The ridges morphology and denudation are more
alike to the Mucuchache moraine than for example to the Mucubaji or Sierra de Santo

Domingo moraines.

MIS 2 glacier advances are extensively evidenced in the Sierra Nevada (including Sierra
de Santo Domingo), Sierra del Norte and Cordillera de Trujillo (Figure VI-4, Table VI-
1). Only sensu-stricto LGM glacier advances are evidenced in the Mucubaji valley
(~3600 m, 21.5+1.3 ka and 19.94+0.8 ka) and at Las Tapias ~3100 m, 19.03+0.57 ka
(Table VI-1, Figure VI-5). The more frequent glacier advances in the central MA
occurred between 17-19 ka and correspond to the end of the LGM and beginning of the
OtD (LGM-OtD) (Figure VI-5). In the Mucubaji valley, this is located between 3572 m
and 3620 m (Figure VI-4 and Table VI-1). In Sierra de Santo Domingo, the (LGM-0OtD)
glaciers advances were identified in La Victoria (~3140 m, 17.45+0.47 ka) and in Los
Zerpa (~3100 m, 18.30+0.46 ka). In Sierra del Norte the LGM-OtD glaciers advances
are related to La Culata moraines complex between 3160 m and 3500 m (moraines 1, 2,
3, 16.88+0.22 ka, 17.78 +0.78 ka and 17.94+0.47 ka, respectively) (Table VI-1). At El
Desecho moraine (~3500 m), the LGM-OtD was dated at 17.97+0.58 ka. In Cordillera
de Trujillo, La Canoa moraine corresponds to the LGM-OtD (~2800 m, 17.89+1.09 ka).
Finally, a moraine located between La Capellania and El Pozo in the Pueblo Llano

valley (~2467 m, 17.32 + 1.72 ka) can be also related (Guzmdn, 2013).
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Figure VI-5. Climate forcing driving central Mérida Andes glacier advances. Glacier
advances in A) Cordillera de Trujillo, B) Sierra del Norte and C) Sierra Nevada-Sierra

de Santo Domingo. D) Temperatures variations in the central Mérida Andes deduced
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from palynological and paleo ELA analysis (Stansell et al., 2007). E) Intertropical
Convergence Zone (ITCZ) variability from the Cariaco Basin (Peterson et al., 2000). F)
880 variations from tropical ice cores: Sajama (Thompson et al., 1998) and Huascardn
(Thompson, 2001). G) 5'%0 variations from the ice core GISP 2 (Greenland) (Stuiver et
al., 1995).

Late Pleistocene MIS 1 glaciers advances in the central MA are not extensively
evidenced (Table VI-1, Figure VI-4 and Figure VI-5). The Younger Dryas (YD) glacier
advance was recorded close to Lago Verde (~4000 m) in the Humboldt Massif (Sierra
Nevada) at 10.52+2.00 "“C BP (12.40 ka cal BP, Figure III-6 number 13), (Mahaney et
al., 2008). Moreover, in the Humboldt Massif the YD glacier advance was suggested
from geochemical and sedimentological analyses of Laguna Los Anteojos at 4045 m but
no geomorphological evidences that attest this glacier advance is presented (Stansell et
al., 2010). In the Mucubaji valley, YD has been documented from dating (13.29+0.22,
13.64+0.15 and 13.66+0.44 cal ka BP) of peat samples covered by glaciofluvial
materials (site MUM7B, ~3800 m, Mahaney et al., 2008). Authors “approximately”
associated a down valley small push moraine to a YD glacier advance (at ~3700-3800
m). However, this push moraine down valley is older than ~ 13.4 ka; it is not in
agreement with a YD glacier advance. New TCN exposure ages support this
assumption. The push moraine is surrounded by data MU15-09, 15.4+1.4 ka, and
MUO08-09, 16.8+£0.8 ka (level 6-level 7, Carcaillet at al., 2013 Figure 2B). The YD
glacier advance in the Mucubaji valley could rather be related to a moraine located at
3862 m (12.0£1.0 ka). In the Mucubaji valley the YD was evidenced based on the
magnetic susceptibility variations of the lake sediments (Carrillo, 2006; Carrillo et al.,

2006).

Until present, YD glaciers advances have been recognized in the Sierra Nevada at
elevations higher than 3860 m (3862 m in the Mucubaji valley and 4000 m in the
Humboldt Massif). The OtD-LGM advances are now evidenced in the Mucubaji valley
between 3570 m and 3620 m, and in Sierra de Santo Domingo at 3100 m. The OtD-
LGM advances are now also evidenced in Sierra del Norte at 3100 and 3500 m and, in
the Cordillera de Trujillo between 2400-2800 m. MIS 3 glacier advances are evidenced
in Sierra Nevada in the Mucuchache and El Caballo at around 3400-3600 m and in
Cordillera de Trujillo at 2500 m. MIS 4 glaciers advances are evidenced in the Mesa del
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Caballo at 3500 m as well as in the Pueblo Llano valley at 2500 m. MIS 5 glacier
advance are evidenced in La Canoa moraine in Cordillera de Trujillo at 2800 m.
Glaciations older than the MIS 5 are not sufficiently documented. The only evidences

correspond to the LAG section from Mesa del Caballo (3500 m).

At regional scale, the relation of glacier advances and elevations is not obvious (Table
VI-1). MIS 4, MIS 3 and MIS 2 glacier advances produced glacial landforms at similar
elevations. The Mérida Glaciation was described based on two moraine complexes
observed between 2600-3500 m (Schubert, 1974). Mérida Glaciation was divided (Early
and Late Mérida) based on chronological data (radiocarbon ages) from the moraines
between 3000-3500 m (older than 13 cal kyr BP). Mérida Glaciation was also divided
based on correlations between the Venezuelan and the Colombian Andes moraines
complexes. Moraines located between 2600 m and 2800 m are related to the Early
Meérida. Moraines between 2900 and 3500 m are related to the Late Mérida. This
definition was a good first approximation to understand the Venezuelan Andes
Glaciation. However, exposures ages determinations from Guzmén (2013) or from this
dissertation provide new results to complement and precise the original knowledge of
the Mérida Glaciation. Exposure ages of the Pueblo Llano valley (Guzméan, 2013, this
dissertation) seems indicate glaciers arrived at elevation lower (2300 m, 2500 m
respectively) than the previous established by Schubert (1974) (2600 m). The
Mucuchache, El Caballo and Pueblo Llano MIS 3 glaciers advances also provide new
information to the Mérida Glaciation. Considering the original Mérida Glaciation
definitions, Mucuchache (3400 m) and El Caballo (3600 m) would be related to the late
Mérida and the Pueblo Llano (2500 m) would be related to the early Mérida. However,
exposure ages indicate that these moraines are related to El Pedregal Interstadial
identified in the central MA between 25-60 ka (Figure VI-5) (Dirszowsky et al., 2005;
Rull, 2005).

Maximum glaciers advances occurred at ages younger than the LGM sensu stricto
during the MIS 2, between the LGM and OtD (17-19 ka). Also as in the Mucuchache
and El Caballo, maximum glaciers advances were reached during the MIS 3. In an
overall view, all the studied valleys, maximum glacier advances are not related to the
global LGM sensu stricto. The central MA glaciation dynamic has a behavior similar to
those of the other glacial areas of the tropical Andes. In the Ecuadorian, Peruvian and

Bolivian Andes, maximum glacier advances mainly occurred during the MIS 3 (see
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detail in Tropical Andes Glaciation, section I-3.0). Another similarity with the tropical
Andes glaciations is the poor evidence of the YD glacier advances (see detail in
Tropical Andes Glaciation, section I-3.0). It could suggest that the YD was not enough
to produce significant ice volumes to produce glaciers advances. However, it is

necessary to continue research on the topic of the YD impact in the tropical Andes.

VI-3.0 Paleoglaciology contributions to the paleoclimate record in the central MA

Local and global paleoclimate conditions, as temperature and precipitation, are
determined from former glacier ELAs (e.g. Lachniet Vazquez-Selem, 2005; Stansell et
al., 2007; Smith et al., 2011). However, considering that the absence of well constrained
modern balance ratios are in the tropics (e.g. Rea et al., 2009), it is important keep in
mind paleo ELA interpretations in this area yield significant uncertainty. In the

following, paleo ELA results are used to infer local paleoclimate conditions trends.

Paleo ELA in the Mucubaji valley during the LGM has been determined by Stansell et
al. (2007). Values ranged between 3640-3710 m considering BR ratios between 5, 10
and AAR between 0.63-0.78. Lachniet and Vazquez-Selem, (2005) also determined
paleo ELA in the Mucubaji valley during the LGM. Paleo ELA ranged between 3626-
4012 m using THAR ratios from 0.2 to 0.5, AAR ratios between 0.65 and 0.8 and,
AABR with BR ratios of 5 and 25. In the frame of our project, Mucubaji paleo ELA
(LGM) was determined between 3769 m and 3847 m, which is slightly above Stansell et
al., 2007 values and in the range proposed by Lachniet and Vazquez-Selem, (2005).

For La Victoria former glacier (LGM-OtD at 17.5 ka), paleo ELA was 3385-3813 m
(Lachniet and Viasquez-Selem, 2005) or 3560-3725 m (Stansell et al., 2007). In this
dissertation, paleo ELA is between 3645-3708 m; in agreement with previous
researches. Finally, for La Canoa former glacier (LGM-OtD at 18 ka) Lachniet and
Vazquez-Selem, (2005) determined values between 3040 and 3475 m, while
calculations developed in this project yield an elevation between 3448 and 3502 m.
New paleo ELA altitudes computed in the frame of this project are in the same order of

previous studies in the central MA (Table VI-2, Table V-5).

Changes in temperature, precipitation, solar radiation or a combination of these factors

are mainly responsible for glacier variability in the tropics (Kaser and Osmaston, 2002).
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Lowest paleo ELA in the Mucuchache valley during MIS 3 (3765+37 m) (Figure V-11)
should reflect more humid climate conditions in comparison with LGM or post LGM.
This could be in agreement with a palynological analysis in the Sierra Nevada, which
established a temperature rise of ~5° C during MIS 3 compared to the LGM
(Dirszowsky et al., 2005; Rull, 2005). This temperature rise could provide more
moisture during the MIS 3. Therefore, Mucuchache and El Caballo glaciers advances

during the MIS 3 seem have been more driven by higher paleo precipitation.

In the Mérida Andes the LGM was dated between 22.75 and 19.96 cal ka BP (Schubert
and Rinaldi, 1987). Paleo ELA was 3882427 m in the Mucuchache valley and 3808+39
m in the Mucubaji valley. LGM ELA gradient is relatively similar but increase during
post LGM period (Mucuchache at 3965+30 m and Mucubaji at 3845+20 m, at ~ 18 ka)
(Figure V-11, Table V-5). This reflects that climate conditions in the vicinity of the
Mucubaji and Mucuchache valleys are more similar during the LGM. However, in this

area, these climate conditions became more different post LGM.

More significant paleo ELA differences are observed at ages younger than 18 ka (Table
V-5, Figure V-11). In Sierra Nevada values are 3965+30 m (La Mucuchache, 18 ka),
3845+20 m (Mucubaji, 18 ka) and 3882+15 m (Mucubaji, 16 ka); in Sierra de Santo
Domingo, 3669+24 m (La Victoria) and 3669+89 m (Los Zerpa); in Sierra del Norte,
4397433 m (Mifafi valley) and in Cordillera de Trujillo 3475+27 m. Variations
observed between Sierra Nevada and Sierra de Santo Domingo former glaciers were
originally attributed to differences in precipitation regimes (Lachniet and Vazquez-
Selem, 2005). Stansell et al. (2007) suggested these paleo ELA variations were mainly
due to different paleo temperatures. However, chronological control of the Sierra de
Santo Domingo terminal moraines was not as documented as at present. Ages
considered for Mucubaji and La Victoria former glaciers by Lachniet and Vazquez-
Selem, (2005) and, Stansell et al. (2007) were not strictly the same. In the Mucubaji and
La Victoria area, age of moraines were 21.5+1.8 ka (modified age from Carcaillet et al.,
2013) and 17.45+0.47 ka (modified age from Wesnousky et al., 2012), respectively. To
strictly compare paleo ELA based on glacial landforms with similar ages, it would be
necessary to compare La Victoria with Mucubaji at 16-18 ka. These moraines involve
different former glaciers polygon with a different paleo ELA (3845+20 m, for Mucubaji
at 18 ka and 3882+15 m, for Mucubaji at 16 ka). These paleo ELA could involve
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different paleo temperatures presented by Stansell et al. (2007). La Victoria glacier
advance could also be related to the Oldest Dryas (OtD) or El Caballo cold event.
Seltzer (1992) concluded that in humid regions, temperature plays a larger role than
precipitation in driving ELA variability. However, Pierrehumbert (1995) indicates that
tropical temperatures variations were low at similar elevations during the late glacial.
This was attributed to the weak Coriolis Effect and lack of north—south movement of air

mass in the tropics.

Paleo ELA computed in Sierra del Norte presented the more significant difference in
comparison with those of Sierra Nevada and Cordillera de Trujillo. These variations
around 900 m indicate a different precipitation pattern during the 16-19 ka periods. The
Mifafi valley in Sierra del Norte was the driest area. The wettest areas are the Sierra de
Santo Domingo and Cordillera de Trujillo. This precipitation pattern is similar to the

present day climate conditions in the central MA.

VI-3.1 Regional and Global climate forcing driving central Mérida Andes
glacier variabilities
The most significant maximum glaciers advances occur at different periods at the scale

of the central MA. Maximum glaciers advances have happened mainly during MIS 3
and particularly during MIS 2 at ages around 17-19 ka (Figure VI-5). The MIS 4 glacier
advance seems to leave a strong imprint in the Pueblo Llano area; however the scatter

data limit its interpretation.

The tropical climate is mainly controlled by insolation, which modulates the changes in
the ITCZ position (Wang et al., 2001). During the last ~90 ka, influence of ITCZ in the
Northern part of South America has been deduced from sediments studies from the
Cariaco Basin (Peterson et al., 2000). During periods of continental high precipitations,
high amount of terrigenous sediments reach into the basin. These sediments richer in
iron and titanium (i.e. proxies of terrigenous sediments) show low reflectance values in
comparison to carbonated sediments. High ITCZ activity implies high atmospheric
moisture available to create precipitation. Low ITCZ activity is related to low moisture
periods and consequent low runoff. In an overall trend, the highest ITCZ activity in the
north of South America occurred during the MIS 3 between around 27-40 ka and during

the MIS 5 between 75-85 ka (Figure VI-5).
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MIS 4 Pueblo Llano glacier advance is related to intermediate precipitation values in the
north of South America based on the Cariaco Basin sediments reflectance (Figure VI-5
A, E, F). Intermediate temperatures prevailed in the Northern Hemisphere based on the
8'80 values in GISP 2 (Figure VI-5 A, E, F). MIS 3 glaciers advances in the study area
were related to ITCZ variations, which produced high runoff in the northern part of
South America (Figure VI-5 E). During the same period, temperatures in the North
Hemisphere were higher than during the MIS 2 as suggested by more positive 5'°0
values in GISP 2 (Figure VI-5 F). In the MA, MIS 3 climatic conditions were warmer
than the LGM and locally named El Pedregal Interstadial (Dirszowsky et al., 2005;
Rull, 2005). Between MIS 3 and MIS 2 temperature dropped ~5 °C as suggested by
palynological analysis of continental sediment (Figure VI-5 D). These high
temperatures during MIS 3 could imply high atmospheric moisture. High atmospheric
moisture increases the precipitation rates and induces high accumulation gradients. High
accumulation gradients imply more positive mass balances which produced the

Mucuchache, El Caballo and Pueblo Llano former glaciers advances.

MIS 2 glacier advances corresponding to the LGM sensu stricto (in the Mucubaji valley
and Las Tapias) are related to the lowest temperatures in the North Hemisphere. It is
deduced from the more negative values of the 8'*0 values in GISP 2 (Figure VI-5 F).
Paleoenvironmental proxies recorded in the MA indicate drier climate conditions during
the LGM (Bradbury et al., 1981; Bradley et al., 1985; Weingarten et al., 1991; Salgado-
Labouriau et al., 1992). Temperatures were ~8 °C cooler than the current temperature
(Stansell et al., 2007) (Figure VI-5 D). However, in the north of South America high
runoff is still inferred from the sediments reflectance in the Cariaco basin (Figure VI-5
C, E). The LGM glacier advance in the Mucubaji was driven by the temperature
decrease (Stansell et al., 2007). During the final LGM-OtD (17-19 ka) the runoff was
lower than the one recorded during LGM ITCZ. The glaciers advances correlate with
the coldest temperatures recorded in the tropical ice core from Huascardn and Sajama in
the Bolivian Andes (Thompson et al., 1998; 2001). The glaciers advances correlate also
with the coldest temperatures recorded in the North Hemisphere (Stuiver et al., 1995)
(Figure VI-5 F). In the central MA, cold climatic conditions were determined at
16.5+0.3 ka BP during El Caballo Stadial (Rull, 1998; Figure VI-5 D). El Caballo
Stadial was identified based on pollen content of fluvioglacial sediments from Mesa del

Caballo section (PED 5). Temperatures were around 7°C lower than today.
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Warm and wet climate conditions during MIS 3 and MIS 4 could generate glacier
advances mainly driven by precipitation. In an overall trend, deglaciation processes in
the central part of the MA began in the Sierra Nevada valleys towards the Chama river
catchment (Mucuchache, El Caballo and Mucubaji). Elevations of the former glacier
snout (or front) were the lowest in the Mucuchache valley. Deglaciation progressed
through the wettest areas, towards the Santo Domingo river catchment (Victoria, Los
Zerpa, Las Tapias). Most of these glacier valleys (except Gavidia) have similar
accumulation zone morphology (NW-SE oriented, headwall around 4300-4500 m)
(Figure VI-3 and Figure VI-4). The glaciers preservation seems to have mainly occurred
in the Sierra de Santo Domingo area and Sierra del Norte. Deglaciation pattern seems to
indicate differences in the local climatic conditions between Sierra Nevada and Sierra

de Santo Domingo as was inferred from the paleo ELA analysis.
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SECTION VII. CONCLUSIONS AND PERSPECTIVES

This dissertation represents a contribution to the knowledge of the glaciations in the
Northern Andes. Late Pleistocene deglaciation histories in the central Mérida Andes
(MA) were determined using the TCN dating (IOBe cosmonuclide). Knowledge about
Late Pleistocene glacier dynamics variabilities was obtained from the deglaciation
record deduced from TCN dating (100 samples) and compilation of published data. Our
new contributions to reconstruct the Last Glaciation in the MA are provided by dating
the different glaciers landforms, glaciers advances and retreats. Results represent also a
new paleoglaciology contribution to the paleoclimate record in the central Mérida

Andes.
Deglaciation histories and origin of variabilities

Different Late Pleistocene glacier’s dynamics occurred in the central MA. In the
Mucubaji and the Mucuchache valleys, successive stages of glacier stop-advance were
identified during an overall glacier withdrawal. In the Mucubaji valley the glacier
withdrawal occurred in two main periods. The oldest one between the LGM and the
Late Glacial (~15 ka), when ice retreat rate was ~25 m/ka. The second one, between 15
ka and the Early Holocene (~11 ka), when ice retreat rate increased to ~310 m/ka. In the
Mucuchache valley, maximum advance was earlier than ~36 ka (corresponding to the
MIS 3) and glacier withdrawal occurred from late MIS 3 (~36 ka) until MIS 2 (~18 ka)
with an ice retreat rate of ~0.25 km/ka. However, additional data is required to precise

the glacial chronologies until the glacier extinction.

In the Gavidia and the Mifafi valleys, the moraine complexes absence (excepted limited
lateral moraines) indicates that glacier dynamic was not intercalated by stages of glacier
stop-advance during the overall glacier withdrawal. In the Gavidia valley, deglaciation
happened in two separate periods. The first one occurred between the LGM (21 ka) and
the Oldest Dryas stadial (OtD at ~16.5 ka or El Caballo Stadial). The second shorter
period occurred at ages similar to the El Caballo Stadial (at ~16.5 ka). During the
LGM/OtD-El Caballo Stadial interval, relatively cold climate conditions were
maintained, leading to low glacier retreat (~0.26 km/ka). In contrast, the glacier

extinction during the period younger than ~16.5 ka, occurred at high rates of ~4.7
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km/ka. In the Mifafi valley in the Sierra del Norte, glacier withdrawal was the fastest

with glacier retreat rate of ~7 km/ka.

The Gavidia and the Mifafi valleys experienced the fastest glaciers withdrawal at
similar periods (OtD-El Caballo Stadial), despite the prevailing cold temperatures. This
particular glacier dynamics could be explained by the NE-SW orientation of the
accumulation zone compared to the NW-SE orientation in the Mucubaji and
Mucuchache valleys. The NW-SE orientation allows higher solar radiation in the glacier
cirques. This condition contributes to a strong glacier reaction to climate change in
comparison to less exposed cirques. In addition, different valley bottom slopes could
explain different glacier dynamics. In the Mifafi and Gavidia valleys, the slopes are the
lowest (5-7°). This topographical feature involves strong glacier surface reactivity to
temperature raise. Climate changes also controlled glacier dynamics in the central MA.
The transition from cold toward warm climate conditions during the Late Pleistocene-
Early Holocene increased glacier withdrawal in the Mucubaji valley. Whereas the
lowest glacier withdrawal rates occurred during the transition LGM-OtD, when cold

climate conditions still prevailed.
Last Glaciation (Mérida Glaciation) reconstruction

Glaciers advances from the MIS 4 to MIS 1 were recognized at elevations between
2500-4200 m. A MIS 4 glacier advance occurred in the Pueblo Llano valley, in
Cordillera de Trujillo at around 2500 m. MIS 3 glaciers advances are located in the
Sierra Nevada at around 3400-3600 m (Mucuchache and El Caballo lateral moraines,
respectively). MIS 2 Glaciers advances are the most evidenced and located at elevations
between around 2460-3620 m. The impact of the LGM sensu stricto in the central
Meérida Andes was not extensively evidenced. Glacier advances related to the LGM
occurred in the Mucubaji valley (frontal moraine at around 3600 m) and Las Tapias
(lateral-terminal moraine around 3100 m). Other significant group of glacier advances
mainly occurred related to the OtD-El Caballo Stadial at around 17 ka (La Culata
between 3100-3400 m; Sierra de Santo Domingo at ~ 3100 m and La Canoa at 2800 m).
MIS 1 glacier evidences are poorly documented. MIS 1 glacier advances have been only
identified in the Sierra Nevada (Mucubaji valley at ~3800 m) during the YD. Maximum

glacier advances in the central MA occurred mainly during MIS 2 between around 17-
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19 ka or during MIS 3 at ages older than 30 ka. There is not a correlation between

glaciers advances and elevations.

The knowledge about the Last Glaciation in the Mérida Andes, traditionally called
Mérida Glaciation, is not completely understood. Schubert glaciological works (e.g.
1972; 1974) significantly contributed to this topic but classification currently needs to
be improved. MIS 3 glaciers advances are firstly recognized in the Mérida Andes and

are not considered in the Mérida Glaciation classification.
Paleoglaciology contribution to the Venezuelan Andes paleoclimate

Similar climate conditions seems to occur in the Sierra Nevada vicinity of the Mucubaji
and Mucuchache valleys during the LGM. It is based on more uniform paleo ELA in
these valleys (3882427 m and 3808+39 m, respectively). These climatic conditions
become more different in post-LGM times. The precipitation pattern at around 16-19 ka
(LGM-OtD-EIl Caballo Stadial) seems to be similar to the current one, based on the
paleo ELA distribution. The driest area at this time could be related to the Mifafi valley
in Sierra del Norte whereas wettest areas were related to Sierra de Santo Domingo and

Cordillera de Trujillo.

MIS 3 and MIS 4 glacier advances are related to the highest ITCZ activity and global
warming (locally identified as El Pedregal Interstadial). MIS 2 maximum glacier
advances are related to the cold temperatures in the North Hemisphere and the coldest
temperatures in the tropical Andes. Majority of these glacier advances seems to be more

related to the coldest temperatures in the tropical Andes (LGM-OtD).

Perspectives

Many new scientific questions are raised. Numerous glacial landforms are still not
described and not dated. This opens the opportunity to undertake new dating campaigns
and thus improve the glacier chronologies in the MA. Special attention must be paid to
the dating of glacier behavior during the pre-LGM period. Two suitable areas have been
identified: the Sierra Nevada (NW of the Mucuchache valley) and the Pueblo Llano
valleys in Cordillera de Trujillo. In fact, we sampled from the glacier’s cirque down to
low lands during our 2014 field trip. Studying the Sierra del Norte and the Sierra

Nevada towards the Bolivar and Humboldt Peaks, will allow improving the knowledge
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of the MIS 2 and MIS 1 glacier advances. In this last site, one peak still is covered by a

glacier.

In terms of tropical paleoclimate, this dissertation results could contribute to quantify
the paleoclimate conditions using paleo ELA values and glacier modelling (e.g.
Plummer and Phillips, 2003). Paleo ELA evolutions for many valleys are now available
and could be used as input for the glacier models. During this dissertation, isotope
stables results were obtained for sediments in the Mucubaji Lake, which was possible
thanks to the CSIC Institute collaboration (Spain). The original idea was to integrate
paleoclimate inferences obtained using both paleoglaciology and isotopes. However, it
was not possible to validate the isotopes results. In the future, it should be very helpful
to integrate these results and new ones from other sediment lakes to improve the MA

paleoclimate knowledge.

Chronological data obtained also open the opportunity to study Neotectonics in the
central Mérida Andes. Glacier landforms from the Sierra de Santo Domingo or Sierra
del Norte as El Desecho moraine are affected by the Bocon6 Fault. Geochronological
dating of the glacial landforms allows calculating the moraines Quaternary offsets and

will provide a contribution to quantify the Bocon6 Fault displacement rate since MIS 2.

Finally, another line of research could be the analysis of water volumes release during
glacier recession and the contribution in terms of hydrological balance and sediments

transport.
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RESUMEN

El estudio de los glaciares tropicales es una tematica
de gran importancia para las areas de paleo-clima,
gestion de riesgos naturales, manejo del recurso agua,
generacion de energia, etc. El presente trabajo muestra
algunos adelantos en el estudio de la dinamica glaciar
cuaternaria en Los Andes Centrales de M¢rida. La
reconstruccion de los glaciares deducida de la
geocronologia con el '"Be in-situ, contribuyen con el
conocimiento climatico regional y global desde el
Ultimo Méximo Glaciar. En el valle de Mucubaji, el
avance maximo del glaciar ocurrié hace mas de18000
aflos y el retiro definitivo hace menos de 9000 afios. El
proceso transcurrio en dos grandes etapas. El glaciar
retrocedio durante el Pleistoceno de ~3500 m a ~3850
m. La parte superior del glaciar estuvo confinado y
desapareci6 rapidamente durante el Holoceno. En Los
Zerpa el avance maximo ocurrié hace aproximadamente
13000 afios.

Palabras claves: Glaciologia Forense, Nucleidos
cosmogénicos, Andes de Mérida

ABSTRACT

Tropical glaciers studies are extremely important for
knowledge of paleoclimatology, natural hazards, water
resources management, power generation, etc. This
article reports the recent progress in the understanding
of quaternary glacier dynamics in the Mérida Central
Andes. Glacier reconstruction deduced from in-situ
produced '’Be dating, contributes with the regional and
global climatic knowledge since the Last Glacial
Maximum. The maximum glacier advance in Mucubaji
valley occurred over 18,000 years ago and glaciers
disappeared less than 9,000 years ago. The retreat
process happened in two main stages. Glacier has
moved back during the Pleistocene from ~3500 m to
~3850 m. The upper ice tongue was confined and
rapidly disappeared during the Holocene. In Los Zerpa
the maximum advance took place 13,000 years ago.

Keywords:  Forensic  Glaciology, = Cosmogenic
nuclides, Andes de Mérida.

INTRODUCCION

Los elementos producidos por accion de los rayos
cosmicos son llamados nucleidos cosmogénicos (o
cosmonucleidos). Los rayos cdésmicos son particulas
cargadas con energia suficiente para producir reacciones
nucleares en los primeros metros de la atmosfera y
litosfera (DUNAI 2010).

El "Be es un cosmonucleido con un tiempo de vida
media de: 1,36+/- 0,07 Ma (NisHIIZUMI E et al. 2007).
Tiene dos origenes, ambos debido a la accién de los
rayos cosmicos sobre la materia terrestre. Una parte del
""Be es producida en la atmodsfera por reacciones
nucleares sobre atomos de nitrégeno y oxigeno; la otra,
es la generada en la litosfera, producida principalmente
por reacciones nucleares en los atomos de O y, en
menor proporcion, en los de Mg, Al, Si y Ca presentes
en los minerales (KOBER et al. 2005). Este tipo de '°Be
es conocido como iso6topo cosmogénico producido in-
situ.

Los factores que controlan la produccion de los
isotopos cosmogénicos (‘’Be) son: la variabilidad del
campo magnético terrestre (latitud), la altitud, la
profundidad y la topografia (LAL 1991, GOSSE &
PHILLIPS 2001, DUNAI 2010).

En las geociencias, la geocronologia mediante el
estudio del '°Be ha permitido resolver interrogantes que
no habian sido resueltas con otros métodos. Puede ser
empleado con el *°Al para estudiar procesos que
resultan de una historia compleja de exposicion. Debido
al tiempo de vida medio del isétopo '"Be, es posible
estudiar procesos ocurridos durante el Cuaternario y el
Plioceno Tardio (DUNAI 2010).

Con el desarrollo del presente trabajo se pretende
aportar informacion que permita la reconstruccion de la
dinamica glaciar cuaternaria en los Andes centrales de
Mérida y, considerando a escala global, el uso de los
glaciares tropicales como indicadores de los cambios
climaticos.

METODOS

El area de trabajo se encuentra remarcada en la figura
1. Corresponde precisamente a la morrena terminal de
Los Zerpa, morrenas de Mucubaji y su valle glaciar.
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Para el desarrollo de este trabajo fueron recolectadas 16 ~ muestras, distribuidas como se muestra en la figura 2.

T

Pico
L “f\ lacun ugue

Ru?“xu o Doy,

Laguna it"
Mucubsji

b

Fig. 1. Area de estudio, sector de la Sierra de Santo Domingo comprendido por los complejos morrénicos y valles
glaciares de Mucubaji y Los Zerpa.

Lugar de
muestreo " Morrenas

Drenaje

. Paleodrenaje
,
_- Falla

Figura 2. Sitios de recoleccion de las muestras del presente trabajo, a) Morrenas de Los Zerpa y b) Valle de
Mucubaji.

La recoleccion se realizd en dos tipos de sitios dentro del macizo rocoso, en los valles glaciares en

distintos: 1) bloques de roca de gran tamafio (> 1 m) zonas con rocas con estrias o rocas aborregadas
abandonados dentro de las morrenas (Figs. 3a, 3b), para  (Fig.3c).

evitar efectos por removilizacion post-depositos y 2)
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Fig.3. Ejemplos de los bloques, rocas aborregadas y estriadas en donde fiteron recolectadas las muestras, a) y b)
bloques abandonados dentro de la morrena, c) rocas aborregadas y estriadas.

Para calcular la tasa de producciéon del '’Be, se tomé
nota de los valores de coordenadas geograficas (latitud,
longitud), altitud y topografia de los alrededores en el
campo. Los espesores de las muestras (desde la
superficie hacia el interior de la roca) se encontraban
entre 2-4 cm.

La extraccion del ''Be comienza con un
procesamiento fisico: la muestra de roca es pulverizada,
tamizada y los minerales pesados son separados
magnéticamente. Sigue con el tratamiento quimico, el
cual consiste en digestiones con 4cidos fuertes: acido
fluorhidrico (HF), acido clorhidrico (HCI), 4cido nitrico
(HNOs) y acido perclérico (HCIO,). Sigue una etapa de
separaciones a través de resinas de intercambio idnico.
Posteriormente se lleva a cabo la purificacion a través
de la precipitacion con amoniaco (NHj3) y finalmente la
calcinacién. El procesamiento quimico de las muestras
fue llevado a cabo en el laboratorio del ISTerre, Francia
segun el procedimiento quimico adaptado de BROWN et
al. (1991) y MERCHEL & HERPERS (1999). Las
mediciones de las muestras fueron llevadas a cabo en
las instalaciones del Laboratorio Nacional Francés
ASTER mediante espectrometria de masas con
acelerador AMS.

Las edades fueron determinadas a través de la
calculadora online Cronus (BALCO et al. 2008), usando
la tasa de produccion dependiente del tiempo de LAL
(1991) modificado por STONE (2000), la cual toma en
cuenta el efecto de los cambios del campo magnético.

RESULTADOS Y DISCUSIONES

En los estudios con los isdtopos cosmogénicos existen
multiples fuentes de error, las cuales pueden alterar los
valores de concentraciones y por ende de la edad. Los
errores de la etapa analitica y metodologica pueden
contribuir con 5-15% y los errores debidos a los factores
geologicos, meteorologicos y otros entre 0-50%. Las
incertidumbres externas comunmente sobrepasan el
10% (BALCO et al. 2008) y las internas se encuentran
entre el 1-5% (DUNAI 2010).

Una fuente de error importante que hay que considerar
es el efecto de la erosion. Este error intenta minimizarse
durante la etapa de recoleccion de las muestras,
seleccionando bloques de gran tamafio que no puedan
ser facilmente transportados y que se encuentren en la
parte superior de una morrena. Por otra parte, en
muestras de basamento rocoso debe identificarse la
presencia de estrias glaciares y las rocas aborregadas
que aseguren la permanencia in-situ de los cuerpos
glaciares (véase Fig. 2¢).

Las incertidumbres obtenidas en los resultados se
encuentran generalmente alrededor del 10 %, mientras
que la mayoria de los errores internos son menores a los
errores externos, lo que garantiza la confiabilidad de las
edades determinadas. Las concentraciones de '"Be se
encuentran entre  270,19%10°  atoms/gqtz/afio 'y
522.40%10° atoms/gqtz/afio; las edades entre 9,08 + 0.82
y 18,14 £2.11 ka (tabla 1).
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Tabla 1: Resultados obtenidos en concentracion de '’ Be en x10°dtomos/gqtz/aiio y las edades en kiloaios (ka).

Informacion

Inf ion del C tracié
Muestra Latitud Longitud Elevacion nom;iil)on € de las Espesor oncleon racion Edades
muestras Be
Valor =~ Error  Valor Errorexterno = Error interno
Tamafio
aparente xlO3
°N °0 m.s.n.m P ka
(largo*anch atomos/gQtz/aflo
o*alto)
*
170001 88117 707884 3127  Morena frontal  Blogue(4.2 30 30142 2795 13837 1,74 1,352
en la cresta 2.7%1)
*
120002 88117 707874 3113 Morenafrontal Blogue(3.7 3 270,19 1941 12481 1,386 0,944
en la cresta 2%2.3)
Lado izquierdo de Bl
Mu09-01 88009 70,8279 3620 la morrena frontal, 7*3‘;{2 4 47712 1654 16784 1,536 0,625
en la cresta (7*4.5%4)
*
Mu09-02 87954 708343 3539  Momena frontal Blogue(l.6 3 522,40 41,55 18,144 2,112 1,563
en la cresta 1.2*0.9)
Morrena frontal Bloque
Mu09-03 8,7951 70,826 3572 3 440,60 28,60 15,661 1,673 10,84
u 7 70,8267 7 enlacresta  (1.7%1.5%0.7) ? ? ? 67 ?
Morrena frontal Bloque
Mu09-04 87874 70,8233 3607 4 372,93 1146 13273 1,195 0,431
en la cresta (1.3*1*0.8)
Mu09-0s 87850 70829 3615  Morenafrontal - Bloque 4 37545 2710 13321 1,483 1,016
enlacresta  (3.5%1.5%1.2)
Morrena frontal Bloque
Mu09-06 8,7852 70,8224 3620 2 463,22 3448 15,957 1,801 1,269
enlacresta  (1.4%¥1.3%0.8)
Basamento con
Mu09-07 87790 70,8197 3697  estria en eje del 3 374,12 16,53 13,841 1,322 0,647
valle
Basamento con
Mu09-08 87785 70,8189 3727  estraenecjedel ~2malto 3 408,50 16,71 14,201 1,335 0,615
valle
Basamento con
Mu09-10 8,7667 70,8129 4067 estria en eje del  ~2 malto 4 306,04 9,55 9,078 0,818 0,304
valle
Bloque
Mu09-11 8,7633 70,8119 4213 Morrena lateral (2*1.5%1) 3 334,55 1027 10,629 0,956 0,348
Basamento con
Mu09-12 8,7659 70,8121 4091 estria en eje del 3 32442 26,38 9,483 1,113 0,825
valle
Mu09-13 87689 708164 3082  Morenaeneleje  Bloque 3 301,52 974 9732 0,881 0336
del valle (3*2*1.5)
Mu09-14 87719 708152 3862  Momenaeneleje  Bloque 30527 2476 9,925 1,164 0,858
delvalle  (1.5%1.5%1.5)
Basamento con
Mu09-15 8,7758 70,8161 3804 estria en eje del 3 390,44 34,08 12,864 1,566 1,188
valle
La ultima época glaciar (Wirm/Wisconsin) estd actualmente en auge. En la bibliografia puede

representada por la glaciacion Mérida (SCHUBERT 1974)
y caracterizada por dos etapas principales: M¢érida
Temprana hace unos 30000 afios (Wisconsin
Intermedia) y Mérida Tardia (Wisconsin Tardia), la cual
incluye el ultimo méximo glaciar (LGM, segun sus
siglas en inglés) entre 13000 y 25000 afios (SCHUBERT
& CLAPPERTON 1990).

El estudio cuantitativo de la geomorfologia glaciar en
Los Andes venezolanos es un tema novedoso y

encontrarse el trabajo de WESNOUSKY et al. (2012),
quién estudié las morrenas de la Victoria y Los Zerpa
mediante la geocronologia con el isétopo cosmogénico
"Be.

Sus valores arrojaron edades entre 15000 afios y
alrededor de 18000 afos. Al comparar con los
resultados de este trabajo, los valores deberian ser mas
cercanos a los obtenidos para la morrena de Los Zerpa,

76



ANGEL I, E. CARRILLO, J. CARCAILLET, F. AUDEMARD & C. BECK. 2013. Geocronologia con el Isétopo '’Be, aplicacién para el estudio de la
Dindmica Glaciar Cuaternaria en la Region Central de los Andes de Mérida. Geos 44: 73-82, 2013

sin embargo, se observan discrepancias (véase Fig. 4,

tablas 1y 2).

B 13.5+0.1ka

3300 - . )

Mucubaji Ultimo Maximo Glacial
Fase Fria 1
3250 4 ) .
Morrena La Victoria

. 135£0.7ka
E
S
-5 3200
(4]
>
<2
w

3150 - 130=11ks 145x08ka

» i Morrena Los Zerpa
—_— _ —t—— _}w—l—!
3100 : n ram— n " " " i
10 12 14 16 18 20 22 24
Edades (ka)

Fig. 4. Grdfico de Edades (ka) vs. Altura (m). A) Morrena de Los Zerpa y morrena de la Victoria. B) Puntos negros
pertenecen a este trabajo, rombos blancos son datos publicados (revisar tablas 1 y 2 para detalles), rombos grises
son los datos de Wesnousky et al. 2012 recalculados con el modelo de tasa de produccion del cosmogénico
dependiente del tiempo.

Al considerar las incertidumbres de los valores, los
datos del trabajo de WESNOUSKY et al. (2012) podrian
entrar dentro del rango de edades que han sido
determinadas en este trabajo. Dichas discrepancias
podrian ser causadas por el tratamiento matematico
utilizado, ya que la metodologia de recoleccion y el
tratamiento quimico fueron los mismos. Los calculos en
este trabajo han sido realizados considerando la
variacion de la tasa de produccion del cosmogénico
dependiente del tiempo, de LAL (1991) modificado por
STONE (2000), mientras que WESNOUSKY et al. (2012)
escogieron una tasa de produccion invariante en el
tiempo, la cual no considera cambios en el campo
magnético terrestre.

Considerando la informaciéon de SCHUBERT &
CLAPPERTON (1990), los resultados obtenidos en este
trabajo coinciden con la  Glaciacion Mérida,
especificamente la etapa de Mérida Tardia, la que
incluye el ultimo maximo glaciar e incluso edades mas
jovenes.

Los resultados en el valle glaciar de Mucubaji
muestran una correlacion inversa entre la altitud y la
edad, caracteristica de un proceso en el que el glaciar va
desapareciendo, dejando primero al descubierto la
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morfologia mas baja hasta que desaparece
completamente a mayores altitudes (véase Fig.5).

En funcién del resultado de la muestra Mu09-02,
perteneciente a la morrena frontal mas externa, podemos
establecer que el avance maximo del glaciar en el Valle
de Mucubaji ocurrid hace mas de 18000 afios. En
funcién de la muestra Mu09-11, ubicada en el circo
glaciar mas alto, podemos establecer que la completa
desaparicion, al menos temporalmente, del glaciar en el
Valle de Mucubaji, ocurrié6 hace menos de 9000 afios
aproximadamente.

Velocidades que pueden ser indicativas del proceso de
desaparicion del glaciar en el valle de Mucubaji pueden
ser inferidas al graficar edad vs. altura. Logran
observarse dos grandes tendencias. Las muestras del
Pleistoceno presentan una menor velocidad de retroceso
del glaciar comparadas con el grupo de muestras del
Holoceno (Fig. 5). Las diferentes etapas de desaparicion
del glaciar podrian estar asociadas con diferentes
eventos climaticos globales.

Comparando los valores de Los Zerpa y Mucubaji, en
la primera las muestras se encuentran cerca de 3100 m
con una edad alrededor de 13000 afios, mientras que en
Mucubaji, las muestras con edades cercanas a los 13000
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aflos corresponden a altitudes superiores a 3600 m  (Figs. 4y 5).
A 97:04ka 13.5£0.1ka
[ He Mucubaji -
Ultimo Maximo Glacial
4050 1 f
\\ Fase Fria 1
3950 \
3 i 13708k
E 35501} * - -
c S
{0 X 5 e
(5]
2 3750
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w | =
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Fig. 5. Resultados de las Edades (ka) vs. Altura (m) para las muestras del valle glaciar de Mucubaji. Puntos negros
son resultados del presente estudio, rombos blancos son datos publicados. Rectas punteadas inclinadas representan
las diferentes tendencias en velocidades del retroceso del glaciar durante el Pleistoceno y Holoceno.

Ademas de la diferencia en altitud entre las morrenas
de Los Zerpa y el Valle de Mucubaji, se encuentra
también la orientacion de los valles, aunado a la
afectacion estructural diferente en ambas zonas.
Posiblemente las diferencias en las orientaciones de los
valles generen condiciones meteoroldgicas variantes,
por ejemplo la pluviometria, que influyan en la
desaparicion de los glaciares.

CONCLUSIONES

Todas las muestras presentadas en este trabajo
arrojaron '°Be edades que corresponden a la Etapa
Tardia de la Glaciacion Mérida e incluso edades mas
jovenes. En el valle glaciar de Mucubaji, parte de la
dinamica del glaciar puede plantearse de la siguiente
manera: el avance maximo hace mas de 18000 afios y la
completa desaparicion hace menos de 9000 afios. A
grosso modo este proceso transcurrido en dos grandes
etapas, durante el Pleistoceno con una menor velocidad
de desaparicion del glaciar y durante el Holoceno a una
mayor velocidad.
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Tabla 2: Informacion cronologica de rasgos geomorfologicos del area de estudio publicada: Mesa del Caballo, Valle de Mucubaji y morrenas de Los Zerpa y La

Andes de Mérida. Geos 44: 73-82, 2013

Victoria.
Elevacion Informacién
Muestra Latitud Longitud (m) de las Edades Referencia
muestras
Método Valor Error - Error +
°N °W m.s.n.m. ka
Capa de 14
Ped5-3VI 878 70.84 3500 turba - Mesa Bg unCal. g6 04 2.84 2.84 Qfag%%ely et
del Caballo ”
Capa de 14
?ed 3VIL ¢ 7g 70.84 3500 turba - Mesa Bg unCal. 50 45 2,79 2.79 h;[a};agz)eff et
op del Caballo al,
Capa de 14
i/?i(ildsl_ 3 VIE ¢ 78 70.84 3500 turba - Mesa Bg unCal. ¢4 64 0 0 Z[al;egz)ely et
del Caballo ”
Capa de 14
g‘;‘:tg;i VI ¢ 78 70.84 3500 turba - Mesa Bg unCal. g3 48 0 0 Z[a};%%ely et
del Caballo ”
Capa de 14
?Zd 3VIL ¢ 7g 70.84 3500 turba - Mesa Bg unCal. 56 o4 2.6 2.6 Z{ag%%ely et
p del Caballo ”
Capa de 2275 - Schubert and
PED 5 8.78 70.84 3500 turba - Mesa '*C cal. BP 19.96 1.04-0.27 1.14-0.28  Rinaldi,
del Caballo : 1987
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Tabla 2: Informacion cronologica de rasgos geomorfologicos del area de estudio publicada: Mesa del Caballo, Valle de Mucubaji y morrenas de Los Zerpa y La
Victoria. (Continuacion)

Elevacion Informacio
Muestra Latitud Longitud (m) n de las Edades Referencia ~ Edades modificadas
muestras
Método Valor Error - Error + Valor Error
°N °W m.s.n.m. ka ka
CAMS- Macrofésil 4 Stansell et
104915 8,784 70,82 3615 es C cal. BP 15,73 0,207 0,195 al.. 2005
acuaticos
Sedimento
sdeterraza 14 Salgadp }
0 8.78 70.82 3650 de C cal. BP 14,88 0,25 0,25 Labouriau
Mucubaji etal., 1977
Sedimento Salgado-
0 8.78 70.82 3650  Sde :fe”aza 4C cal. BP 13,83 0,1 0,1 Labouriau
Mucubaji etal., 1977
MUM 7B 8.77 70.81 3800 Aluvién 4 o1 gp 13,29 0,22 0.9  Mahaneyet
organico al., 2008
MUM 7B 8.77 70.81 3800 Turba  'Ccal. BP 13,64 0,15 0,22 hﬁha;ggget
MUM 7B 8.77 70.81 3800 Turba  '“Ccal. BP 13,66 0,44 0,36 Nfl‘ha;goyget
CAMS- 14 Stansell et
104914 8,784 70,82 3615 Turba C cal. BP 6,28 0,063 0,021 al.. 2005
Bloque de
Gneiss de 10 Wesnousky
VEN 19 8,8141 70,8006 3255 Morrena Be 18,6 4.1 4,1 etal., 2012
La Victoria 15,8 3,4
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Tabla 2: Informacion cronologica publicada de rasgos geomorfologicos del area de estudio: Mesa del Caballo, Valle de Mucubaji y morrenas de Los Zerpa y La
Victoria.(Continuacion)

Elevacion Informacion
uestra atitu ongitu e las ades eferencia ades modificadas
M Latitud Longitud (Vm) del Edad Referenci Edades modificad
muestras
Método Valor Error - Erior Valor Error
°N °W m.s.n.m. ka ka
Bloque de
Metagranito 10 Wesnousky
VEN 23 8,8139 70,7993 3243 de Morrena Be 15,1 1,4 1,4 etal, 2012
La Victoria 13,0 12
Bloque de Wesnousk
VEN 25 8,8121 70,7881 3115 Gneiss de 08¢ 17,7 2,1 2,1 y
Los Zeroa etal., 2012
P 15,2 1,7
Bloque de Wesnousk
VEN 26 8,812 70,7873 3104 Gneiss de ""Be 15 2 2 Y
etal., 2012
Los Zerpa 12,9 1,7
Bloque de Wesnousk
VEN 27 8,8117 70,7875 3105 Gneiss de "Be 17,8 1,6 1,6 Y
etal., 2012
Los Zerpa 15,1 1,4
Bloque de Wesnousk
VEN 28 8,8118 70,7873 3106 Gneiss de "Be 16,9 1,7 1,7 Y
etal., 2012
Los Zerpa 14,6 1,4
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